{"title":"Prospective clinical evaluation of deep learning for ultrasonographic screening of abdominal aortic aneurysms","authors":"I-Min Chiu, Tien-Yu Chen, You-Cheng Zheng, Xin-Hong Lin, Fu-Jen Cheng, David Ouyang, Chi-Yung Cheng","doi":"10.1038/s41746-024-01269-4","DOIUrl":null,"url":null,"abstract":"Abdominal aortic aneurysm (AAA) often remains undetected until rupture due to limited access to diagnostic ultrasound. This trial evaluated a deep learning (DL) algorithm to guide AAA screening by novice nurses with no prior ultrasonography experience. Ten nurses performed 15 scans each on patients over 65, assisted by a DL object detection algorithm, and compared against physician-performed scans. Ultrasound scan quality, assessed by three blinded expert physicians, was the primary outcome. Among 184 patients, DL-guided novices achieved adequate scan quality in 87.5% of cases, comparable to the 91.3% by physicians (p = 0.310). The DL model predicted AAA with an AUC of 0.975, 100% sensitivity, and 97.8% specificity, with a mean absolute error of 2.8 mm in predicting aortic width compared to physicians. This study demonstrates that DL-guided POCUS has the potential to democratize AAA screening, offering performance comparable to experienced physicians and improving early detection.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":null,"pages":null},"PeriodicalIF":12.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01269-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01269-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Abdominal aortic aneurysm (AAA) often remains undetected until rupture due to limited access to diagnostic ultrasound. This trial evaluated a deep learning (DL) algorithm to guide AAA screening by novice nurses with no prior ultrasonography experience. Ten nurses performed 15 scans each on patients over 65, assisted by a DL object detection algorithm, and compared against physician-performed scans. Ultrasound scan quality, assessed by three blinded expert physicians, was the primary outcome. Among 184 patients, DL-guided novices achieved adequate scan quality in 87.5% of cases, comparable to the 91.3% by physicians (p = 0.310). The DL model predicted AAA with an AUC of 0.975, 100% sensitivity, and 97.8% specificity, with a mean absolute error of 2.8 mm in predicting aortic width compared to physicians. This study demonstrates that DL-guided POCUS has the potential to democratize AAA screening, offering performance comparable to experienced physicians and improving early detection.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.