{"title":"Pathogenesis of Germinal Matrix Hemorrhage: Insights from Single-Cell Transcriptomics.","authors":"Jiapei Chen,Jennifer Ja-Yoon Choi,Pin-Yeh Lin,Eric J Huang","doi":"10.1146/annurev-pathmechdis-111523-023446","DOIUrl":null,"url":null,"abstract":"The germinal matrix harbors neurogenic niches in the subpallium of the prenatal human brain that produce abundant GABAergic neurons. In preterm infants, the germinal matrix is particularly vulnerable to developing hemorrhage, which disrupts neurogenesis and causes severe neurodevelopmental sequelae. However, the disease mechanisms that promote germinal matrix hemorrhage remain unclear. Here, we review recent advances using single-cell transcriptomics to uncover novel mechanisms that govern neurogenesis and angiogenesis in the germinal matrix of the prenatal human brain. These approaches also reveal the critical role of immune-vascular interaction that promotes vascular morphogenesis in the germinal matrix and how proinflammatory factors from activated neutrophils and monocytes can disrupt this process, leading to hemorrhage. Collectively, these results reveal fundamental disease mechanisms and therapeutic interventions for germinal matrix hemorrhage.","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":"1 1","pages":""},"PeriodicalIF":28.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Pathology-Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-pathmechdis-111523-023446","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The germinal matrix harbors neurogenic niches in the subpallium of the prenatal human brain that produce abundant GABAergic neurons. In preterm infants, the germinal matrix is particularly vulnerable to developing hemorrhage, which disrupts neurogenesis and causes severe neurodevelopmental sequelae. However, the disease mechanisms that promote germinal matrix hemorrhage remain unclear. Here, we review recent advances using single-cell transcriptomics to uncover novel mechanisms that govern neurogenesis and angiogenesis in the germinal matrix of the prenatal human brain. These approaches also reveal the critical role of immune-vascular interaction that promotes vascular morphogenesis in the germinal matrix and how proinflammatory factors from activated neutrophils and monocytes can disrupt this process, leading to hemorrhage. Collectively, these results reveal fundamental disease mechanisms and therapeutic interventions for germinal matrix hemorrhage.
期刊介绍:
The Annual Review of Pathology: Mechanisms of Disease is a scholarly journal that has been published since 2006. Its primary focus is to provide a comprehensive overview of recent advancements in our knowledge of the causes and development of significant human diseases. The journal places particular emphasis on exploring the current and evolving concepts of disease pathogenesis, as well as the molecular genetic and morphological changes associated with various diseases. Additionally, the journal addresses the clinical significance of these findings.
In order to increase accessibility and promote the broad dissemination of research, the current volume of the journal has transitioned from a gated subscription model to an open access format. This change has been made possible through the Annual Reviews' Subscribe to Open program, which allows all articles published in this volume to be freely accessible to readers. As part of this transition, all articles in the journal are published under a Creative Commons Attribution (CC BY) license, which encourages open sharing and use of the research.