Giant magnetocaloric effect of Ni-Co-Mn-Ti all-d Heusler alloys in high magnetic fields

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Benedikt Beckmann , Andreas Taubel , Tino Gottschall , Lukas Pfeuffer , David Koch , Franziska Staab , Enrico Bruder , Franziska Scheibel , Konstantin P. Skokov , Oliver Gutfleisch
{"title":"Giant magnetocaloric effect of Ni-Co-Mn-Ti all-d Heusler alloys in high magnetic fields","authors":"Benedikt Beckmann ,&nbsp;Andreas Taubel ,&nbsp;Tino Gottschall ,&nbsp;Lukas Pfeuffer ,&nbsp;David Koch ,&nbsp;Franziska Staab ,&nbsp;Enrico Bruder ,&nbsp;Franziska Scheibel ,&nbsp;Konstantin P. Skokov ,&nbsp;Oliver Gutfleisch","doi":"10.1016/j.actamat.2024.120460","DOIUrl":null,"url":null,"abstract":"<div><div>Ni-Co-Mn-Ti all-<em>d</em> Heusler alloys are attracting considerable attention for solid-state caloric cooling applications due to their promising combination of excellent caloric and mechanical properties. Here, we report on the maximum attainable magnetocaloric effect in Ni<sub>37</sub>Co<sub>13</sub>Mn<sub>34.5</sub>Ti<sub>15.5</sub>, which shows a first-order magnetostructural martensitic transformation around room temperature. Heat capacity measurements reveal a giant transition entropy change of 43.5<!--> <!-->J(kgK)<sup>\\protect \\relax \\special {t4ht=−}1</sup> and are utilized to estimate the magnetocaloric effect as well as the magnetic fields required to saturate it in isothermal and adiabatic conditions. Confirming the results based on this approach, we achieve maximum isothermal entropy changes and directly measured adiabatic temperature changes of 37.8<!--> <!-->J(kgK)<sup>\\protect \\relax \\special {t4ht=−}1</sup> and <span><math><mo>−</mo></math></span>20.2<!--> <!-->K, respectively. Thus, the herein reported maximum attainable magnetocaloric effect outperforms classical Ni-Mn-based Heusler alloys, such as Ni(-Co)-Mn-In. Especially the saturated adiabatic temperature change surpasses all previously published values of magnetic field-induced first-order phase transitions measured around room temperature in pulsed magnetic fields in recent years. Thereby, we demonstrate that Ni(-Co)-Mn-Ti Heusler alloys are particularly suitable for the application of sufficiently large external stimuli to fully induce the phase transition and exploit their intrinsically large caloric effect.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"282 ","pages":"Article 120460"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008097","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ni-Co-Mn-Ti all-d Heusler alloys are attracting considerable attention for solid-state caloric cooling applications due to their promising combination of excellent caloric and mechanical properties. Here, we report on the maximum attainable magnetocaloric effect in Ni37Co13Mn34.5Ti15.5, which shows a first-order magnetostructural martensitic transformation around room temperature. Heat capacity measurements reveal a giant transition entropy change of 43.5 J(kgK)\protect \relax \special {t4ht=−}1 and are utilized to estimate the magnetocaloric effect as well as the magnetic fields required to saturate it in isothermal and adiabatic conditions. Confirming the results based on this approach, we achieve maximum isothermal entropy changes and directly measured adiabatic temperature changes of 37.8 J(kgK)\protect \relax \special {t4ht=−}1 and 20.2 K, respectively. Thus, the herein reported maximum attainable magnetocaloric effect outperforms classical Ni-Mn-based Heusler alloys, such as Ni(-Co)-Mn-In. Especially the saturated adiabatic temperature change surpasses all previously published values of magnetic field-induced first-order phase transitions measured around room temperature in pulsed magnetic fields in recent years. Thereby, we demonstrate that Ni(-Co)-Mn-Ti Heusler alloys are particularly suitable for the application of sufficiently large external stimuli to fully induce the phase transition and exploit their intrinsically large caloric effect.

Abstract Image

Abstract Image

高磁场中 Ni-Co-Mn-Ti 全 D Heusler 合金的巨磁效应
镍-钴-锰-钛全二元 Heusler 合金由于兼具出色的热性能和机械性能,在固态热冷却应用中备受关注。在此,我们报告了 Ni37Co13Mn34.5Ti15.5 中可达到的最大磁致冷效应,它在室温附近显示出一阶磁致结构马氏体转变。热容量测量显示了43.5 J(kgK)\protect \relax \special {t4ht=-}1的巨大转变熵变,并利用它来估算磁致效应以及在等温和绝热条件下使其饱和所需的磁场。基于这种方法的结果得到了证实,我们获得的最大等温熵变和直接测量的绝热温度变化分别为 37.8 J(kgK)\protect \relax \special {t4ht=-}1 和 -20.2 K。因此,本文所报告的可达到的最大磁致效应优于经典的镍锰基海斯勒合金,如镍(-Co)-锰-铟。尤其是饱和绝热温度变化超过了近年来在脉冲磁场中室温附近测量到的所有已公布的磁场诱导一阶相变值。因此,我们证明了 Ni(-Co)-Mn-Ti Heusler 合金特别适合应用足够大的外部刺激来充分诱导相变并利用其内在的大热效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信