PT-invariant generalised non-local nonlinear Schrödinger equation: soliton solutions

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2024-10-15 DOI:10.1007/s12043-024-02827-x
Nirmoy Kumar Das, Dhanashri Barman, Ashoke Das, Towhid E Aman
{"title":"PT-invariant generalised non-local nonlinear Schrödinger equation: soliton solutions","authors":"Nirmoy Kumar Das,&nbsp;Dhanashri Barman,&nbsp;Ashoke Das,&nbsp;Towhid E Aman","doi":"10.1007/s12043-024-02827-x","DOIUrl":null,"url":null,"abstract":"<div><p>A new generalised non-local nonlinear Schrödinger (NLS) equation is introduced which possesses a Lax pair and is parity–time (<i>PT</i>)-symmetric. Thus, it is confirmed that the generalised non-local NLS equation is integrable. The inverse scattering transform for the generalised non-local NLS equation is developed using a Riemann–Hilbert problem for rapidly decaying initial data and an approach for finding pure soliton solutions is described. The analytical characteristics of the eigenfunctions, scattering data and their symmetries are discussed. Finally, using <i>Mathematica</i> some important two-dimensional plots of the wave solutions are shown to illustrate the dynamics of the model.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"98 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02827-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A new generalised non-local nonlinear Schrödinger (NLS) equation is introduced which possesses a Lax pair and is parity–time (PT)-symmetric. Thus, it is confirmed that the generalised non-local NLS equation is integrable. The inverse scattering transform for the generalised non-local NLS equation is developed using a Riemann–Hilbert problem for rapidly decaying initial data and an approach for finding pure soliton solutions is described. The analytical characteristics of the eigenfunctions, scattering data and their symmetries are discussed. Finally, using Mathematica some important two-dimensional plots of the wave solutions are shown to illustrate the dynamics of the model.

PT 不变的广义非局部非线性薛定谔方程:孤子解
本文引入了一个新的广义非局部非线性薛定谔(NLS)方程,该方程具有拉克斯对和奇偶时(PT)对称性。因此,可以证实广义非局部 NLS 方程是可积分的。利用快速衰减初始数据的黎曼-希尔伯特问题,建立了广义非局部 NLS 方程的反散射变换,并描述了寻找纯孤子解的方法。还讨论了特征函数、散射数据及其对称性的分析特征。最后,使用 Mathematica 展示了一些重要的波解二维图,以说明模型的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信