{"title":"Distributed Task Processing Platform for Infrastructure-Less IoT Networks: A Multi-Dimensional Optimization Approach","authors":"Qiushi Zheng;Jiong Jin;Zhishu Shen;Libing Wu;Iftekhar Ahmad;Yong Xiang","doi":"10.1109/TPDS.2024.3469545","DOIUrl":null,"url":null,"abstract":"With the rapid development of artificial intelligence (AI) and the Internet of Things (IoT), intelligent information services have showcased unprecedented capabilities in acquiring and analysing information. The conventional task processing platforms rely on centralised Cloud processing, which encounters challenges in infrastructure-less environments with unstable or disrupted electrical grids and cellular networks. These challenges hinder the deployment of intelligent information services in such environments. To address these challenges, we propose a distributed task processing platform (\n<inline-formula><tex-math>${DTPP}$</tex-math></inline-formula>\n) designed to provide satisfactory performance for executing computationally intensive applications in infrastructure-less environments. This platform leverages numerous distributed homogeneous nodes to process the arriving task locally or collaboratively. Based on this platform, a distributed task allocation algorithm is developed to achieve high task processing performance with limited energy and bandwidth resources. To validate our approach, \n<inline-formula><tex-math>${DTPP}$</tex-math></inline-formula>\n has been tested in an experimental environment utilising real-world experimental data to simulate IoT network services in infrastructure-less environments. Extensive experiments demonstrate that our proposed solution surpasses comparative algorithms in key performance metrics, including task processing ratio, task processing accuracy, algorithm processing time, and energy consumption.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 12","pages":"2392-2404"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10697292/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of artificial intelligence (AI) and the Internet of Things (IoT), intelligent information services have showcased unprecedented capabilities in acquiring and analysing information. The conventional task processing platforms rely on centralised Cloud processing, which encounters challenges in infrastructure-less environments with unstable or disrupted electrical grids and cellular networks. These challenges hinder the deployment of intelligent information services in such environments. To address these challenges, we propose a distributed task processing platform (
${DTPP}$
) designed to provide satisfactory performance for executing computationally intensive applications in infrastructure-less environments. This platform leverages numerous distributed homogeneous nodes to process the arriving task locally or collaboratively. Based on this platform, a distributed task allocation algorithm is developed to achieve high task processing performance with limited energy and bandwidth resources. To validate our approach,
${DTPP}$
has been tested in an experimental environment utilising real-world experimental data to simulate IoT network services in infrastructure-less environments. Extensive experiments demonstrate that our proposed solution surpasses comparative algorithms in key performance metrics, including task processing ratio, task processing accuracy, algorithm processing time, and energy consumption.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.