Transition metals tailoring of phosphorus-doped gallium nitride nanotubes as sensors for N-butenyl homoserine lactone (BHL): A computational study

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Bassey O. Ekpong , Hewa Y. Abdullah , Emmanuel Emmanuel , Innocent Benjamin , Daniel C. Agurokpon
{"title":"Transition metals tailoring of phosphorus-doped gallium nitride nanotubes as sensors for N-butenyl homoserine lactone (BHL): A computational study","authors":"Bassey O. Ekpong ,&nbsp;Hewa Y. Abdullah ,&nbsp;Emmanuel Emmanuel ,&nbsp;Innocent Benjamin ,&nbsp;Daniel C. Agurokpon","doi":"10.1016/j.comptc.2024.114914","DOIUrl":null,"url":null,"abstract":"<div><div>This investigation is focused on the impact of transition metals (Ag, Au, and Cu) encapsulations of phosphorus-doped gallium nitride nanotubes (P@GaNNTs) to achieve precise detection and sensing of <em>N</em>-Butenyl homoserine lactone (BHL), which is a biomarker for urinary tract infection, within the framework of density functional theory (DFT) computation at the B3LYP-D3(BJ)/def2SVP method. Adsorption studies unveil the adsorption energies for BHL detection across the systems, with BHL_Cu_P@GaNNT displaying the most favorable adsorption energy of −1.79247 eV and BSSE correction (−1.7685 eV). Additionally, sensor mechanisms are elucidated through Fermi energy level (E<sub>FL</sub>) calculations, revealing distinct values of 4.748, 4.242, 5.052, and 3.864 for BHL_Ag_P@GaNNT, BHL_Au_P@GaNNT, BHL_Cu_P@GaNNT, and BHL_P@GaNNT, respectively. These values signify variances in charge transfer dynamics upon BHL interaction. In essence, this study lays the foundation for the development of highly efficient biosensors with exceptional biomarker detection capabilities, particularly in the context of urinary tract infections (UTIs). It opens new avenues in the realm of biosensing technology, promising innovative solutions for healthcare and diagnostics.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1241 ","pages":"Article 114914"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24004535","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation is focused on the impact of transition metals (Ag, Au, and Cu) encapsulations of phosphorus-doped gallium nitride nanotubes (P@GaNNTs) to achieve precise detection and sensing of N-Butenyl homoserine lactone (BHL), which is a biomarker for urinary tract infection, within the framework of density functional theory (DFT) computation at the B3LYP-D3(BJ)/def2SVP method. Adsorption studies unveil the adsorption energies for BHL detection across the systems, with BHL_Cu_P@GaNNT displaying the most favorable adsorption energy of −1.79247 eV and BSSE correction (−1.7685 eV). Additionally, sensor mechanisms are elucidated through Fermi energy level (EFL) calculations, revealing distinct values of 4.748, 4.242, 5.052, and 3.864 for BHL_Ag_P@GaNNT, BHL_Au_P@GaNNT, BHL_Cu_P@GaNNT, and BHL_P@GaNNT, respectively. These values signify variances in charge transfer dynamics upon BHL interaction. In essence, this study lays the foundation for the development of highly efficient biosensors with exceptional biomarker detection capabilities, particularly in the context of urinary tract infections (UTIs). It opens new avenues in the realm of biosensing technology, promising innovative solutions for healthcare and diagnostics.

Abstract Image

过渡金属定制的掺磷氮化镓纳米管作为 N-丁烯基高丝氨酸内酯 (BHL) 的传感器:计算研究
本研究在 B3LYP-D3(BJ)/def2SVP 方法的密度泛函理论(DFT)计算框架内,重点研究了过渡金属(Ag、Au 和 Cu)封装磷掺杂氮化镓纳米管(P@GaNNTs)对实现精确检测和传感 N-丁烯基高丝氨酸内酯(BHL)的影响,BHL 是一种尿路感染的生物标记物。吸附研究揭示了各系统检测 BHL 的吸附能,其中 BHL_Cu_P@GaNNT 显示出最有利的吸附能(-1.79247 eV)和 BSSE 校正(-1.7685 eV)。此外,通过费米能级(EFL)计算阐明了传感器机制,发现 BHL_Ag_P@GaNNT、BHL_Au_P@GaNNT、BHL_Cu_P@GaNNT 和 BHL_P@GaNNT 的不同值分别为 4.748、4.242、5.052 和 3.864。这些数值表明 BHL 相互作用时电荷转移动力学存在差异。总之,这项研究为开发具有卓越生物标志物检测能力的高效生物传感器奠定了基础,尤其是在尿路感染(UTI)方面。它开辟了生物传感技术领域的新途径,有望为医疗保健和诊断提供创新解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信