Mechanical and thermal properties as a function of matrix composition of all-oxide ceramic matrix composites fabricated by a sequential infiltration process
F. Lindner, G. Puchas, F. Wich, S. Hariri, S. Schafföner
{"title":"Mechanical and thermal properties as a function of matrix composition of all-oxide ceramic matrix composites fabricated by a sequential infiltration process","authors":"F. Lindner, G. Puchas, F. Wich, S. Hariri, S. Schafföner","doi":"10.1016/j.jeurceramsoc.2024.116978","DOIUrl":null,"url":null,"abstract":"<div><div>The microstructural design of matrices for all-oxide ceramic matrix composites (Ox/Ox) with damage tolerant fracture behavior is challenging. Therefore, the potential use of different matrix materials might be limited even though they appear to offer advantageous functional properties, such as thermal insulation or corrosion resistance. In this study, we investigated the hypothesis of simultaneously adjusting mechanical and functional properties by separate matrix phases within and between the fiber bundles in Ox/Ox. A sequential infiltration process was used to manufacture Ox/Ox with an alumina-zirconia matrix phase (high damage tolerance) and a mullite-alumina matrix phase (thermal insulation). The effect on the mechanical and thermal properties was governed by the infiltration sequences. A property combination was achieved for either the mechanical or the thermal behavior. This was due to a shear-induced mixing of the matrix phases during the lamination process, which renders it difficult to achieve distinctly separated matrix phases within the composite.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 116978"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924008513","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The microstructural design of matrices for all-oxide ceramic matrix composites (Ox/Ox) with damage tolerant fracture behavior is challenging. Therefore, the potential use of different matrix materials might be limited even though they appear to offer advantageous functional properties, such as thermal insulation or corrosion resistance. In this study, we investigated the hypothesis of simultaneously adjusting mechanical and functional properties by separate matrix phases within and between the fiber bundles in Ox/Ox. A sequential infiltration process was used to manufacture Ox/Ox with an alumina-zirconia matrix phase (high damage tolerance) and a mullite-alumina matrix phase (thermal insulation). The effect on the mechanical and thermal properties was governed by the infiltration sequences. A property combination was achieved for either the mechanical or the thermal behavior. This was due to a shear-induced mixing of the matrix phases during the lamination process, which renders it difficult to achieve distinctly separated matrix phases within the composite.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.