{"title":"Comprehensive review of literature on Parkinson’s disease diagnosis","authors":"P. Pradeep, Kamalakannan J.","doi":"10.1016/j.compbiolchem.2024.108228","DOIUrl":null,"url":null,"abstract":"<div><div>PD is one of the neurodegenerative illnesses affects 1–2 individuals per 1000 people over the age of 60 and has a 1 % prevalence rate. It affects both the non-motor and motor aspects of movement, including initiation, execution, and planning. Prior to behavioral and cognitive abnormalities like dementia, movement-related symptoms including stiffness, tremor, and initiation issues may be observed. Patients with PD have substantial reductions in social interactions, quality of life (QoL), and familial ties, as well as significant financial burdens on both the individual and societal levels. The healthcare industry is mostly using ML approaches with the modalities like image, signal, and data as well. Therefore, this survey aims to conduct a review of 50 articles on Parkinson disease diagnosis using different modalities. The survey includes (i) Classifying multimodal articles on Parkinson disease diagnosis (image, signal, data) using various machine learning, deep learning, and other approaches. (ii) Analyzing different datasets, simulation tools used in the existing papers. (iii)Examining certain performance measures, assessing the best performance, and chronological review of reviewed paper. Finally, the review determines the research gaps and obstacles in this research topic.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108228"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002160","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PD is one of the neurodegenerative illnesses affects 1–2 individuals per 1000 people over the age of 60 and has a 1 % prevalence rate. It affects both the non-motor and motor aspects of movement, including initiation, execution, and planning. Prior to behavioral and cognitive abnormalities like dementia, movement-related symptoms including stiffness, tremor, and initiation issues may be observed. Patients with PD have substantial reductions in social interactions, quality of life (QoL), and familial ties, as well as significant financial burdens on both the individual and societal levels. The healthcare industry is mostly using ML approaches with the modalities like image, signal, and data as well. Therefore, this survey aims to conduct a review of 50 articles on Parkinson disease diagnosis using different modalities. The survey includes (i) Classifying multimodal articles on Parkinson disease diagnosis (image, signal, data) using various machine learning, deep learning, and other approaches. (ii) Analyzing different datasets, simulation tools used in the existing papers. (iii)Examining certain performance measures, assessing the best performance, and chronological review of reviewed paper. Finally, the review determines the research gaps and obstacles in this research topic.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.