Alexandros Syrakos , Evgenios Gryparis , Georgios C. Georgiou
{"title":"A revisit of the development of viscoplastic flow in pipes and channels","authors":"Alexandros Syrakos , Evgenios Gryparis , Georgios C. Georgiou","doi":"10.1016/j.jnnfm.2024.105341","DOIUrl":null,"url":null,"abstract":"<div><div>This study revisits the development of viscoplastic flow in pipes and channels, focusing on the flow of a Bingham plastic. Using finite element simulations and the Papanastasiou regularisation, results are obtained across a range of Reynolds and Bingham numbers. The novel contributions of this work include: (a) investigating a definition of the development length based on wall shear stress, a critical parameter in numerous applications; (b) considering alternative definitions of the Reynolds number in an effort to collapse the development length curves onto a single master curve, independent of the Bingham number; (c) examining the patterns of yielded and unyielded regions within the flow domain; and (d) assessing the impact of the regularisation parameter on the accuracy of the results. The findings enhance the existing literature, providing a more comprehensive understanding of this classic flow problem.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"334 ","pages":"Article 105341"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724001575","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study revisits the development of viscoplastic flow in pipes and channels, focusing on the flow of a Bingham plastic. Using finite element simulations and the Papanastasiou regularisation, results are obtained across a range of Reynolds and Bingham numbers. The novel contributions of this work include: (a) investigating a definition of the development length based on wall shear stress, a critical parameter in numerous applications; (b) considering alternative definitions of the Reynolds number in an effort to collapse the development length curves onto a single master curve, independent of the Bingham number; (c) examining the patterns of yielded and unyielded regions within the flow domain; and (d) assessing the impact of the regularisation parameter on the accuracy of the results. The findings enhance the existing literature, providing a more comprehensive understanding of this classic flow problem.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.