Performance and Characteristics of Sprayed Flexible Sensor for Strain Monitoring of Steel Bridges

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Qing-Hua Zhang, Jun Chen, Qi-Bin Huang, Shao-Bing Shao, Chuang Cui
{"title":"Performance and Characteristics of Sprayed Flexible Sensor for Strain Monitoring of Steel Bridges","authors":"Qing-Hua Zhang,&nbsp;Jun Chen,&nbsp;Qi-Bin Huang,&nbsp;Shao-Bing Shao,&nbsp;Chuang Cui","doi":"10.1155/2024/2966457","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Monitoring stress and strain at the critical details of steel bridges is essential for ensuring structural integrity. This study introduces a three-layer flexible strain sensor produced through a spraying process, using flake-shaped silver-coated copper powder as the conductive filler and modified acrylic emulsion as the matrix material. The study investigated the impact of size parameters on sensor sensitivity, determining optimal dimensions of 20 mm in length, 2 mm in width, and an initial resistance value ranging from 1.0 Ω to 1.8 Ω. Analysis of the optimized sensor’s performance unveiled high sensitivity and linear response capabilities under low strain conditions with a gauge factor (GF) value of up to 25.6 and a linear correlation coefficient <i>R</i><sup>2</sup> ≥ 0.971 under 300 με. Notably, the sensor exhibits an extremely low strain detection limit of 0.005% and a broad response range spanning from 0.005% to 0.19% strain. It demonstrates swift response and recovery times of 500–800 ms, showcases directional strain response, exhibits good repeatability, and endures durability tests (withstanding 3000 cycles). Furthermore, a fitting formula is proposed to accurately depict the strain and relative resistance change relationship across a wide response range. The study and initial application of this sensor’s sensing characteristics and performance signify its potential for practical engineering applications.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2966457","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2966457","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring stress and strain at the critical details of steel bridges is essential for ensuring structural integrity. This study introduces a three-layer flexible strain sensor produced through a spraying process, using flake-shaped silver-coated copper powder as the conductive filler and modified acrylic emulsion as the matrix material. The study investigated the impact of size parameters on sensor sensitivity, determining optimal dimensions of 20 mm in length, 2 mm in width, and an initial resistance value ranging from 1.0 Ω to 1.8 Ω. Analysis of the optimized sensor’s performance unveiled high sensitivity and linear response capabilities under low strain conditions with a gauge factor (GF) value of up to 25.6 and a linear correlation coefficient R2 ≥ 0.971 under 300 με. Notably, the sensor exhibits an extremely low strain detection limit of 0.005% and a broad response range spanning from 0.005% to 0.19% strain. It demonstrates swift response and recovery times of 500–800 ms, showcases directional strain response, exhibits good repeatability, and endures durability tests (withstanding 3000 cycles). Furthermore, a fitting formula is proposed to accurately depict the strain and relative resistance change relationship across a wide response range. The study and initial application of this sensor’s sensing characteristics and performance signify its potential for practical engineering applications.

Abstract Image

用于钢桥应变监测的喷涂柔性传感器的性能和特点
监测钢结构桥梁关键部位的应力和应变对于确保结构的完整性至关重要。本研究介绍了一种通过喷涂工艺生产的三层柔性应变传感器,使用片状银涂层铜粉作为导电填料,改性丙烯酸乳液作为基体材料。研究调查了尺寸参数对传感器灵敏度的影响,确定了最佳尺寸为长 20 毫米、宽 2 毫米,初始电阻值范围为 1.0 Ω 至 1.8 Ω。对优化传感器性能的分析表明,该传感器在低应变条件下具有高灵敏度和线性响应能力,测量系数 (GF) 值高达 25.6,在 300 με 条件下线性相关系数 R2 ≥ 0.971。值得注意的是,该传感器的应变检测限极低,仅为 0.005%,响应范围广,从 0.005% 到 0.19% 不等。它的快速响应和恢复时间为 500-800 毫秒,显示出定向应变响应,具有良好的重复性,并能经受耐久性测试(可承受 3000 次循环)。此外,还提出了一个拟合公式,可在较宽的响应范围内准确描述应变和相对电阻变化的关系。对这种传感器传感特性和性能的研究和初步应用表明,它具有实际工程应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信