{"title":"Displacement Measurement and 3D Reconstruction of Segmental Retaining Wall Using Deep Convolutional Neural Networks and Binocular Stereovision","authors":"Minh-Vuong Pham, Yun-Tae Kim, Yong-Soo Ha","doi":"10.1155/2024/9912238","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Computer vision techniques were employed to monitor the displacement of retaining walls using artificial markers, traditional feature detection algorithms, and photogrammetry-based point cloud reconstruction. However, the use of artificial markers often increases both installation time and costs, whereas the performance of traditional feature matching is affected by uneven illumination, and photogrammetry techniques require multiple images for point cloud reconstruction. To overcome these limitations, a nontarget-based displacement monitoring method for segmental retaining walls (SRWs) using a combination of deep learning and stereovision was proposed. Binocular stereovision was employed to reconstruct the geometry and surface properties of the SRW in a digital three-dimensional (3D) model. Deep learning models were then used to extract natural features from SRW blocks, enabling displacement calculation without using artificial targets. The performance was evaluated by monitoring the behaviors of SRW experiments at both laboratory and field scales. The deep learning–based image segmentation models identified SRW block features in the experiment and real case datasets with an average F1 score from 0.910 to 0.965 under various environmental conditions. The reconstructed results of point cloud coordinates demonstrated high accuracy, ranging from 95.2% to 98.6%. Furthermore, the calculated displacement exhibited a high degree of agreement with the measured displacement. The accuracy of the calculated displacements for the laboratory and field experiments ranged from 89.5% to 99.1%. The proposed method can be used for automatic SRW displacement monitoring.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9912238","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9912238","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Computer vision techniques were employed to monitor the displacement of retaining walls using artificial markers, traditional feature detection algorithms, and photogrammetry-based point cloud reconstruction. However, the use of artificial markers often increases both installation time and costs, whereas the performance of traditional feature matching is affected by uneven illumination, and photogrammetry techniques require multiple images for point cloud reconstruction. To overcome these limitations, a nontarget-based displacement monitoring method for segmental retaining walls (SRWs) using a combination of deep learning and stereovision was proposed. Binocular stereovision was employed to reconstruct the geometry and surface properties of the SRW in a digital three-dimensional (3D) model. Deep learning models were then used to extract natural features from SRW blocks, enabling displacement calculation without using artificial targets. The performance was evaluated by monitoring the behaviors of SRW experiments at both laboratory and field scales. The deep learning–based image segmentation models identified SRW block features in the experiment and real case datasets with an average F1 score from 0.910 to 0.965 under various environmental conditions. The reconstructed results of point cloud coordinates demonstrated high accuracy, ranging from 95.2% to 98.6%. Furthermore, the calculated displacement exhibited a high degree of agreement with the measured displacement. The accuracy of the calculated displacements for the laboratory and field experiments ranged from 89.5% to 99.1%. The proposed method can be used for automatic SRW displacement monitoring.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.