HSPEI: A 1-km spatial resolution SPEI dataset across the Chinese mainland from 2001 to 2022

IF 3.3 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Haoming Xia, Yintao Sha, Xiaoyang Zhao, Wenzhe Jiao, Hongquan Song, Jia Yang, Wei Zhao, Yaochen Qin
{"title":"HSPEI: A 1-km spatial resolution SPEI dataset across the Chinese mainland from 2001 to 2022","authors":"Haoming Xia,&nbsp;Yintao Sha,&nbsp;Xiaoyang Zhao,&nbsp;Wenzhe Jiao,&nbsp;Hongquan Song,&nbsp;Jia Yang,&nbsp;Wei Zhao,&nbsp;Yaochen Qin","doi":"10.1002/gdj3.276","DOIUrl":null,"url":null,"abstract":"<p>The Standardized Precipitation Evapotranspiration Index (SPEI) is a widely recognized and effective tool for monitoring meteorological droughts. However, existing SPEI datasets suffer from spatial discontinuity or coarse spatial resolution problems, which limits their applications at the local level for drought monitoring research. Therefore, we calculated the SPEI index at meteorological stations, combined with the Global Precipitation Measurement (GPM) Precipitation (Pre), Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST), ERA5-Land Shortwave Radiation (SR), Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) datasets and Random Forest Regression (RFR) model, developed a high spatial resolution (1 km) SPEI (HSPEI) datasets with multiple time scales in mainland China from 2001 to 2022. Compared to other SPEI datasets, the HSPEI datasets have higher spatial resolution and can effectively identify the detailed characteristics of drought in mainland China from 2001 to 2022. Overall, the HSPEI datasets can be effectively applied to the research of different droughts in China from 2001 to 2022.</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":"11 4","pages":"479-494"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.276","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.276","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Standardized Precipitation Evapotranspiration Index (SPEI) is a widely recognized and effective tool for monitoring meteorological droughts. However, existing SPEI datasets suffer from spatial discontinuity or coarse spatial resolution problems, which limits their applications at the local level for drought monitoring research. Therefore, we calculated the SPEI index at meteorological stations, combined with the Global Precipitation Measurement (GPM) Precipitation (Pre), Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST), ERA5-Land Shortwave Radiation (SR), Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) datasets and Random Forest Regression (RFR) model, developed a high spatial resolution (1 km) SPEI (HSPEI) datasets with multiple time scales in mainland China from 2001 to 2022. Compared to other SPEI datasets, the HSPEI datasets have higher spatial resolution and can effectively identify the detailed characteristics of drought in mainland China from 2001 to 2022. Overall, the HSPEI datasets can be effectively applied to the research of different droughts in China from 2001 to 2022.

Abstract Image

HSPEI:2001 至 2022 年中国大陆 1 公里空间分辨率 SPEI 数据集
标准化降水蒸散指数(SPEI)是公认的监测气象干旱的有效工具。然而,现有的 SPEI 数据集存在空间不连续性或空间分辨率较低的问题,限制了其在地方干旱监测研究中的应用。因此,我们结合全球降水测量(GPM)降水量(Pre)、中分辨率成像光谱仪(MODIS)陆地表面温度(LST)、ERA5-陆地短波辐射(SR),计算了气象站的 SPEI 指数、在此基础上,利用航天飞机雷达地形图任务(SRTM)数字高程模型(DEM)数据集和随机森林回归(RFR)模型,建立了 2001-2022 年中国大陆多时间尺度的高空间分辨率(1 公里)SPEI(HSPEI)数据集。与其他 SPEI 数据集相比,HSPEI 数据集具有更高的空间分辨率,能够有效识别 2001 至 2022 年中国大陆干旱的详细特征。总体而言,HSPEI 数据集可有效地应用于 2001 至 2022 年中国不同旱情的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoscience Data Journal
Geoscience Data Journal GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍: Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered. An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices. Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信