Flat Hypercomplex Nilmanifolds are \(\mathbb H\)-Solvable

IF 0.6 4区 数学 Q3 MATHEMATICS
Yulia Gorginyan
{"title":"Flat Hypercomplex Nilmanifolds are \\(\\mathbb H\\)-Solvable","authors":"Yulia Gorginyan","doi":"10.1134/S001626632403002X","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(\\mathbb H\\)</span> be a quaternion algebra generated by <span>\\(I,J\\)</span> and <span>\\(K\\)</span>. We say that a hypercomplex nilpotent Lie algebra <span>\\(\\mathfrak g\\)</span> is <span>\\(\\mathbb H\\)</span><i>-solvable</i> if there exists a sequence of <span>\\(\\mathbb H\\)</span>-invariant subalgebras containing <span>\\(\\mathfrak g_{i+1}=[\\mathfrak g_i,\\mathfrak g_i]\\)</span>, </p><p> such that <span>\\([\\mathfrak g_i^{\\mathbb H},\\mathfrak g_i^{\\mathbb H}]\\subset\\mathfrak g^{\\mathbb H}_{i+1}\\)</span> and <span>\\(\\mathfrak g_{i+1}^{\\mathbb H}=\\mathbb H[\\mathfrak g_i^{\\mathbb H},\\mathfrak g_i^{\\mathbb H}] \\)</span>. Let <span>\\(N=\\Gamma\\setminus G\\)</span> be a hypercomplex nilmanifold with the flat Obata connection and <span>\\(\\mathfrak g=\\operatorname{Lie}(G)\\)</span>. We prove that the Lie algebra <span>\\(\\mathfrak g\\)</span> is <span>\\(\\mathbb H\\)</span>-solvable. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S001626632403002X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathbb H\) be a quaternion algebra generated by \(I,J\) and \(K\). We say that a hypercomplex nilpotent Lie algebra \(\mathfrak g\) is \(\mathbb H\)-solvable if there exists a sequence of \(\mathbb H\)-invariant subalgebras containing \(\mathfrak g_{i+1}=[\mathfrak g_i,\mathfrak g_i]\),

such that \([\mathfrak g_i^{\mathbb H},\mathfrak g_i^{\mathbb H}]\subset\mathfrak g^{\mathbb H}_{i+1}\) and \(\mathfrak g_{i+1}^{\mathbb H}=\mathbb H[\mathfrak g_i^{\mathbb H},\mathfrak g_i^{\mathbb H}] \). Let \(N=\Gamma\setminus G\) be a hypercomplex nilmanifold with the flat Obata connection and \(\mathfrak g=\operatorname{Lie}(G)\). We prove that the Lie algebra \(\mathfrak g\) is \(\mathbb H\)-solvable.

平超复数无穷折线是(\mathbb H\ )可解的
让 \(\mathbb H\) 是一个由 \(I,J\) 和 \(K\) 生成的四元数代数。如果存在一个包含 \(\mathfrak g_{i+1}=[\mathfrak g_i,\mathfrak g_i]\)的 \(\mathbb H\)-invariant 子代数序列,那么我们说一个超复数零能烈代数是 \(\mathbb H\)-solvable 的、 使得([\mathfrak g_i^{\mathbb H}、\和(\mathfrak g_{i+1}^{\mathbb H}=\mathbb H[\mathfrak g_i^{\mathbb H},\mathfrak g_i^{\mathbb H}] \)。让(N=\Gamma\setminus G\) 是一个具有平面小畑(Obata)连接的超复数无芒点,并且(\mathfrak g=\operatorname{Lie}(G)\)是一个具有平面小畑(Obata)连接的超复数无芒点。我们证明了烈代数((\mathfrak g\) is \(\mathbb H\) -solvable.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信