The Extrema of \(q\)- and Dual \(q\)-Quermassintegrals for the Asymmetric \(L_p\)-Difference Bodies

IF 0.6 4区 数学 Q3 MATHEMATICS
Weidong Wang,  Hui Xue
{"title":"The Extrema of \\(q\\)- and Dual \\(q\\)-Quermassintegrals for the Asymmetric \\(L_p\\)-Difference Bodies","authors":"Weidong Wang,&nbsp; Hui Xue","doi":"10.1134/S0016266324030018","DOIUrl":null,"url":null,"abstract":"<p> Wang and Ma introduced the notion of asymmetric <span>\\(L_p\\)</span>-difference bodies. They further gave the extrema of volumes for the asymmetric <span>\\(L_p\\)</span>-difference body and its polar. Thereafter, Shi and Wang obtained their versions of quermassintegrals and dual quermassintegrals. In this paper, we determine the extrema of the <span>\\(q\\)</span>-quermassintegrals and dual <span>\\(q\\)</span>-quermassintegrals for the asymmetric <span>\\(L_p\\)</span>-difference bodies. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266324030018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Wang and Ma introduced the notion of asymmetric \(L_p\)-difference bodies. They further gave the extrema of volumes for the asymmetric \(L_p\)-difference body and its polar. Thereafter, Shi and Wang obtained their versions of quermassintegrals and dual quermassintegrals. In this paper, we determine the extrema of the \(q\)-quermassintegrals and dual \(q\)-quermassintegrals for the asymmetric \(L_p\)-difference bodies.

不对称\(L_p\)-差分体的\(q\)-和双\(q\)-质点积分的极值
Wang 和 Ma 引入了不对称 \(L_p\)- 差分体的概念。他们进一步给出了非对称(L_p\)差分体的体积极值及其极值。此后,Shi 和 Wang 又得到了他们版本的量子整数和二重量子整数。在本文中,我们确定了非对称\(L_p\)-差分体的\(q\)-质点积分和双\(q\)-质点积分的极值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信