{"title":"Blow-up invariance of cohomology theories with modulus","authors":"Junnosuke Koizumi","doi":"10.1016/j.aim.2024.109967","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study cohomology theories of <span><math><mi>Q</mi></math></span>-modulus pairs, which are pairs <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> consisting of a scheme <em>X</em> and a <span><math><mi>Q</mi></math></span>-divisor <em>D</em>. Our main theorem provides a sufficient condition for such a cohomology theory to be invariant under blow-ups with centers contained in the divisor. This yields a short proof of the blow-up invariance of the Hodge cohomology with modulus proved by Kelly-Miyazaki. We also define the Witt vector cohomology with modulus using the Brylinski-Kato filtration and prove its blow-up invariance.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109967"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004821","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study cohomology theories of -modulus pairs, which are pairs consisting of a scheme X and a -divisor D. Our main theorem provides a sufficient condition for such a cohomology theory to be invariant under blow-ups with centers contained in the divisor. This yields a short proof of the blow-up invariance of the Hodge cohomology with modulus proved by Kelly-Miyazaki. We also define the Witt vector cohomology with modulus using the Brylinski-Kato filtration and prove its blow-up invariance.
本文研究 Q 模对的同调理论,即由方案 X 和 Q 分因子 D 组成的对 (X,D)。我们的主要定理提供了一个充分条件,使这种同调理论在中心包含在分因子中的吹胀下保持不变。这就产生了凯利-宫崎(Kelly-Miyazaki)所证明的带模霍奇同调的炸毁不变性的简短证明。我们还利用布赖林斯基-加藤滤波定义了带模的维特向量同调,并证明了它的炸毁不变性。
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.