Blow-up invariance of cohomology theories with modulus

IF 1.5 1区 数学 Q1 MATHEMATICS
Junnosuke Koizumi
{"title":"Blow-up invariance of cohomology theories with modulus","authors":"Junnosuke Koizumi","doi":"10.1016/j.aim.2024.109967","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study cohomology theories of <span><math><mi>Q</mi></math></span>-modulus pairs, which are pairs <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> consisting of a scheme <em>X</em> and a <span><math><mi>Q</mi></math></span>-divisor <em>D</em>. Our main theorem provides a sufficient condition for such a cohomology theory to be invariant under blow-ups with centers contained in the divisor. This yields a short proof of the blow-up invariance of the Hodge cohomology with modulus proved by Kelly-Miyazaki. We also define the Witt vector cohomology with modulus using the Brylinski-Kato filtration and prove its blow-up invariance.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109967"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004821","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study cohomology theories of Q-modulus pairs, which are pairs (X,D) consisting of a scheme X and a Q-divisor D. Our main theorem provides a sufficient condition for such a cohomology theory to be invariant under blow-ups with centers contained in the divisor. This yields a short proof of the blow-up invariance of the Hodge cohomology with modulus proved by Kelly-Miyazaki. We also define the Witt vector cohomology with modulus using the Brylinski-Kato filtration and prove its blow-up invariance.
有模同调理论的胀大不变性
本文研究 Q 模对的同调理论,即由方案 X 和 Q 分因子 D 组成的对 (X,D)。我们的主要定理提供了一个充分条件,使这种同调理论在中心包含在分因子中的吹胀下保持不变。这就产生了凯利-宫崎(Kelly-Miyazaki)所证明的带模霍奇同调的炸毁不变性的简短证明。我们还利用布赖林斯基-加藤滤波定义了带模的维特向量同调,并证明了它的炸毁不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信