{"title":"The flap endonuclease-1 mediated maturation of Okazaki fragments is critical for the cellular tolerance to remdesivir","authors":"Md Ratul Rahman, Ryotaro Kawasumi, Kouji Hirota","doi":"10.1016/j.dnarep.2024.103773","DOIUrl":null,"url":null,"abstract":"<div><div>Remdesivir is a 1’-cyano-modified adenine nucleotide analog used for the treatment of COVID-19. Recently, the anti-carcinogenic effect of remdesivir has been also identified in human cancers. However, the impact of this drug and the mechanisms underlying the cellular tolerance to remdesivir have not been elucidated. Here, we explored DNA repair pathways responsible for the cellular tolerance to remdesivir by monitoring the sensitivity of 24 mutant DT40 cells deficient in various DNA repair pathways. We found that cells deficient in FEN1 displayed the highest sensitivity against remdesivir. Since FEN1 contributes to base excision repair (BER), we measured the cellular sensitivity to remdesivir in mutants deficient in BER and found that other BER mutants such as <em>XRCC1</em><sup><em>−/−</em></sup> and <em>PARP1</em><sup><em>−/−</em></sup> cells are tolerant to remdesivir, indicating that FEN1 contributes to cellular tolerance to remdesivir through roles other than BER. We observed augmented DNA damage and acute cell cycle arrest at early S-phase after remdesivir treatment in <em>FEN1</em><sup><em>−/−</em></sup> cells. Moreover, the replication fork progression was significantly slowed by remdesivir in <em>FEN1</em><sup><em>−/−</em></sup> cells, indicating a direct involvement of FEN1 in replication fork progression when replication is challenged by remdesivir. Since FEN1 contributes to Okazaki fragment maturation (OFM), a process ligating Okazaki fragments generated during lagging strand synthesis, we analyzed the kinetics of the repair of single-strand breaks (SSBs) in nascent DNA. Strikingly, <em>FEN1</em><sup><em>−/−</em></sup> cells exhibited slowed kinetics in OFM, and remdesivir incorporation critically impaired this process in <em>FEN1</em><sup><em>−/−</em></sup> cells. These results indicate that remdesivir is preferentially incorporated in Okazaki fragments leading to the failure of Okazaki fragment maturation and FEN1 plays a critical role in suppressing remdesivir-mediated DNA damage through Okazaki fragment processing. Collectively, we revealed a previously unappreciated role of FEN1 in the cellular tolerance to remdesivir.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"144 ","pages":"Article 103773"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786424001496","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Remdesivir is a 1’-cyano-modified adenine nucleotide analog used for the treatment of COVID-19. Recently, the anti-carcinogenic effect of remdesivir has been also identified in human cancers. However, the impact of this drug and the mechanisms underlying the cellular tolerance to remdesivir have not been elucidated. Here, we explored DNA repair pathways responsible for the cellular tolerance to remdesivir by monitoring the sensitivity of 24 mutant DT40 cells deficient in various DNA repair pathways. We found that cells deficient in FEN1 displayed the highest sensitivity against remdesivir. Since FEN1 contributes to base excision repair (BER), we measured the cellular sensitivity to remdesivir in mutants deficient in BER and found that other BER mutants such as XRCC1−/− and PARP1−/− cells are tolerant to remdesivir, indicating that FEN1 contributes to cellular tolerance to remdesivir through roles other than BER. We observed augmented DNA damage and acute cell cycle arrest at early S-phase after remdesivir treatment in FEN1−/− cells. Moreover, the replication fork progression was significantly slowed by remdesivir in FEN1−/− cells, indicating a direct involvement of FEN1 in replication fork progression when replication is challenged by remdesivir. Since FEN1 contributes to Okazaki fragment maturation (OFM), a process ligating Okazaki fragments generated during lagging strand synthesis, we analyzed the kinetics of the repair of single-strand breaks (SSBs) in nascent DNA. Strikingly, FEN1−/− cells exhibited slowed kinetics in OFM, and remdesivir incorporation critically impaired this process in FEN1−/− cells. These results indicate that remdesivir is preferentially incorporated in Okazaki fragments leading to the failure of Okazaki fragment maturation and FEN1 plays a critical role in suppressing remdesivir-mediated DNA damage through Okazaki fragment processing. Collectively, we revealed a previously unappreciated role of FEN1 in the cellular tolerance to remdesivir.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.