Yan Gao , Lunzhi Deng , Shuai Feng , Huan Liu , Binhan Li , Na Wang
{"title":"Revocable certificate-based broadcast signcryption scheme for edge-enabled IIoT","authors":"Yan Gao , Lunzhi Deng , Shuai Feng , Huan Liu , Binhan Li , Na Wang","doi":"10.1016/j.ins.2024.121540","DOIUrl":null,"url":null,"abstract":"<div><div>In edge computing-enabled Industrial Internet of Things (edge-enabled IIoT), edge computing facilitates data processing with reduced latency, enhanced reliability, and optimized real-time resource use. With the rapid increase in connected devices, ensuring secure data sharing among them is crucial. Broadcast signcryption technology is an excellent choice for achieving data confidentiality and authentication while enhancing operational efficiency. With devices potentially expiring, aging, or suffering damage, the prompt revocation of their decryption privileges is essential. Currently, there is a lack of research that simultaneously integrates broadcast signcryption with a revocation mechanism. In this paper, we propose a revocable certificate-based broadcast signcryption (RCB-BSC) scheme tailored for edge-enabled IIoT. In our work, base station generates a signcrypted ciphertext for multiple edge computing nodes (ECNs), and sends it to edge service (ES). The ES revokes the access of illegitimate ECNs and generates a new ciphertext for those ECNs with non-revoked decryption privileges, allowing them to decrypt the message using their private keys. Under the random oracle model (ROM), our scheme achieves plaintext confidentiality, ensures anonymity of receivers, and authenticates the legitimacy of the broadcaster. Moreover, the performance analysis shows our scheme excels in computation and communication efficiency, making it ideal for edge-enabled IIoT.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"690 ","pages":"Article 121540"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524014543","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In edge computing-enabled Industrial Internet of Things (edge-enabled IIoT), edge computing facilitates data processing with reduced latency, enhanced reliability, and optimized real-time resource use. With the rapid increase in connected devices, ensuring secure data sharing among them is crucial. Broadcast signcryption technology is an excellent choice for achieving data confidentiality and authentication while enhancing operational efficiency. With devices potentially expiring, aging, or suffering damage, the prompt revocation of their decryption privileges is essential. Currently, there is a lack of research that simultaneously integrates broadcast signcryption with a revocation mechanism. In this paper, we propose a revocable certificate-based broadcast signcryption (RCB-BSC) scheme tailored for edge-enabled IIoT. In our work, base station generates a signcrypted ciphertext for multiple edge computing nodes (ECNs), and sends it to edge service (ES). The ES revokes the access of illegitimate ECNs and generates a new ciphertext for those ECNs with non-revoked decryption privileges, allowing them to decrypt the message using their private keys. Under the random oracle model (ROM), our scheme achieves plaintext confidentiality, ensures anonymity of receivers, and authenticates the legitimacy of the broadcaster. Moreover, the performance analysis shows our scheme excels in computation and communication efficiency, making it ideal for edge-enabled IIoT.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.