T.E. Soto , E. Martínez-Aguilar , C. Carvallo , B. Aguilar
{"title":"Study of the magnetic and structural properties of the simple perovskite YFeO3","authors":"T.E. Soto , E. Martínez-Aguilar , C. Carvallo , B. Aguilar","doi":"10.1016/j.ssc.2024.115719","DOIUrl":null,"url":null,"abstract":"<div><div>In the present work, an experimental and theoretical study of the synthesis, magnetic, and structural properties of simple perovskite compounds YFeO<sub>3</sub> has been investigated based on their potential applications, such as: solid oxide fuel cells, electrochemical sensors, sensor materials, magneto-optical materials, etc. Experimentally, the synthesis was carried out by the sol-gel method. X-rays and Rietveld refinements confirmed the orthorhombic structure. Scanning electron microscopy observations confirmed agglomerates of simple perovskite particles YFeO<sub>3</sub>. The study of the magnetic phase of the simple perovskite YFeO<sub>3</sub> showed that it behaves like a weak ferromagnetic, this property delimits and directs magnetic fields into well-defined trajectories. On the other hand, the structural results, from a theoretical point of view, are in good agreement with the experimental ones. Through energy comparison, a possible competition was identified between the FM and AFM states, where the electronic properties are associated with the directional nature of the hybridization between the p orbitals of oxygen and the <em>t</em><sub><em>2</em></sub><em>g</em> states, where the superexchange mechanism prevails with e oxygen as mediator.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"394 ","pages":"Article 115719"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824002965","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, an experimental and theoretical study of the synthesis, magnetic, and structural properties of simple perovskite compounds YFeO3 has been investigated based on their potential applications, such as: solid oxide fuel cells, electrochemical sensors, sensor materials, magneto-optical materials, etc. Experimentally, the synthesis was carried out by the sol-gel method. X-rays and Rietveld refinements confirmed the orthorhombic structure. Scanning electron microscopy observations confirmed agglomerates of simple perovskite particles YFeO3. The study of the magnetic phase of the simple perovskite YFeO3 showed that it behaves like a weak ferromagnetic, this property delimits and directs magnetic fields into well-defined trajectories. On the other hand, the structural results, from a theoretical point of view, are in good agreement with the experimental ones. Through energy comparison, a possible competition was identified between the FM and AFM states, where the electronic properties are associated with the directional nature of the hybridization between the p orbitals of oxygen and the t2g states, where the superexchange mechanism prevails with e oxygen as mediator.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.