A novel incremental ensemble learning for real-time explainable forecasting of electricity price

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Laura Melgar-García , Alicia Troncoso
{"title":"A novel incremental ensemble learning for real-time explainable forecasting of electricity price","authors":"Laura Melgar-García ,&nbsp;Alicia Troncoso","doi":"10.1016/j.knosys.2024.112574","DOIUrl":null,"url":null,"abstract":"<div><div>The development of a stable, safe, secure and sustainable energy future is a challenge for all countries these days. In terms of electricity price, its volatile nature makes its prediction a complex task. A precise real-time forecast of the electricity price can have significant consequences for the economy and risks faced. This work presents a new ensemble learning algorithm for making real-time predictions of electricity price in Spain. It combines long and short-term behavior patterns following an online incremental learning approach, keeping the model always up to date. The detection of novelties and unexpected behaviors in the time series streams allows the algorithm to provide more accurate predictions than the reference machine learning algorithms with which it is compared. In addition, the proposed algorithm predicts in real-time and the predictions obtained are interpretable, thus contributing to the Explainable Artificial Intelligence.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012085","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The development of a stable, safe, secure and sustainable energy future is a challenge for all countries these days. In terms of electricity price, its volatile nature makes its prediction a complex task. A precise real-time forecast of the electricity price can have significant consequences for the economy and risks faced. This work presents a new ensemble learning algorithm for making real-time predictions of electricity price in Spain. It combines long and short-term behavior patterns following an online incremental learning approach, keeping the model always up to date. The detection of novelties and unexpected behaviors in the time series streams allows the algorithm to provide more accurate predictions than the reference machine learning algorithms with which it is compared. In addition, the proposed algorithm predicts in real-time and the predictions obtained are interpretable, thus contributing to the Explainable Artificial Intelligence.
用于电价实时可解释预测的新型增量集合学习
发展稳定、安全、可靠和可持续的未来能源是当今所有国家面临的挑战。就电价而言,其波动性使预测成为一项复杂的任务。准确的实时电价预测会对经济和面临的风险产生重大影响。这项工作提出了一种新的集合学习算法,用于对西班牙的电价进行实时预测。它采用在线增量学习方法,将长期和短期行为模式结合起来,使模型始终保持最新。通过检测时间序列流中的新情况和意外行为,该算法能够提供比参考机器学习算法更准确的预测。此外,所提出的算法还能进行实时预测,而且所获得的预测结果是可解释的,从而为 "可解释的人工智能"(Explainable Artificial Intelligence)做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信