{"title":"Tight conic approximation of testing regions for quantum statistical models and measurements","authors":"Michele Dall'Arno , Francesco Buscemi","doi":"10.1016/j.physleta.2024.129956","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum statistical models (i.e., families of normalized density matrices) and quantum measurements (i.e., positive operator-valued measures) can be regarded as linear maps: the former, mapping the space of effects to the space of probability distributions; the latter, mapping the space of states to the space of probability distributions. The images of such linear maps are called the testing regions of the corresponding model or measurement. Testing regions are notoriously impractical to treat analytically in the quantum case. Our first result is to provide an implicit outer approximation of the testing region of any given quantum statistical model or measurement in any finite dimension: namely, a region in probability space that contains the desired image, but is defined implicitly, using a formula that depends only on the given model or measurement. The outer approximation that we construct is <em>minimal</em> among all such outer approximations, and <em>close</em>, in the sense that it becomes the <em>maximal inner</em> approximation up to a constant scaling factor. Finally, we apply our approximation to provide sufficient conditions, that can be tested in a semi-device-independent way, for the ability to transform one quantum statistical model or measurement into another.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"526 ","pages":"Article 129956"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124006509","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum statistical models (i.e., families of normalized density matrices) and quantum measurements (i.e., positive operator-valued measures) can be regarded as linear maps: the former, mapping the space of effects to the space of probability distributions; the latter, mapping the space of states to the space of probability distributions. The images of such linear maps are called the testing regions of the corresponding model or measurement. Testing regions are notoriously impractical to treat analytically in the quantum case. Our first result is to provide an implicit outer approximation of the testing region of any given quantum statistical model or measurement in any finite dimension: namely, a region in probability space that contains the desired image, but is defined implicitly, using a formula that depends only on the given model or measurement. The outer approximation that we construct is minimal among all such outer approximations, and close, in the sense that it becomes the maximal inner approximation up to a constant scaling factor. Finally, we apply our approximation to provide sufficient conditions, that can be tested in a semi-device-independent way, for the ability to transform one quantum statistical model or measurement into another.
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.