{"title":"Android malware defense through a hybrid multi-modal approach","authors":"Asmitha K.A. , Vinod P. , Rafidha Rehiman K.A. , Neeraj Raveendran , Mauro Conti","doi":"10.1016/j.jnca.2024.104035","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid proliferation of Android apps has given rise to a dark side, where increasingly sophisticated malware poses a formidable challenge for detection. To combat this evolving threat, we present an explainable hybrid multi-modal framework. This framework leverages the power of deep learning, with a novel model fusion technique, to illuminate the hidden characteristics of malicious apps. Our approach combines models (leveraging late fusion approach) trained on attributes derived from static and dynamic analysis, hence utilizing the unique strengths of each model. We thoroughly analyze individual feature categories, feature ensembles, and model fusion using traditional machine learning classifiers and deep neural networks across diverse datasets. Our hybrid fused model outperforms others, achieving an F1-score of 99.97% on CICMaldroid2020. We use SHAP (SHapley Additive exPlanations) and t-SNE (t-distributed Stochastic Neighbor Embedding) to further analyze and interpret the best-performing model. We highlight the efficacy of our architectural design through an ablation study, revealing that our approach consistently achieves over 99% detection accuracy across multiple deep learning models. This paves the way groundwork for substantial advancements in security and risk mitigation within interconnected Android OS environments.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"233 ","pages":"Article 104035"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804524002121","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid proliferation of Android apps has given rise to a dark side, where increasingly sophisticated malware poses a formidable challenge for detection. To combat this evolving threat, we present an explainable hybrid multi-modal framework. This framework leverages the power of deep learning, with a novel model fusion technique, to illuminate the hidden characteristics of malicious apps. Our approach combines models (leveraging late fusion approach) trained on attributes derived from static and dynamic analysis, hence utilizing the unique strengths of each model. We thoroughly analyze individual feature categories, feature ensembles, and model fusion using traditional machine learning classifiers and deep neural networks across diverse datasets. Our hybrid fused model outperforms others, achieving an F1-score of 99.97% on CICMaldroid2020. We use SHAP (SHapley Additive exPlanations) and t-SNE (t-distributed Stochastic Neighbor Embedding) to further analyze and interpret the best-performing model. We highlight the efficacy of our architectural design through an ablation study, revealing that our approach consistently achieves over 99% detection accuracy across multiple deep learning models. This paves the way groundwork for substantial advancements in security and risk mitigation within interconnected Android OS environments.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.