{"title":"2D/3D registration based on biplanar X-ray and CT images for surgical navigation","authors":"","doi":"10.1016/j.cmpb.2024.108444","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objectives:</h3><div>Image-based 2D/3D registration is a crucial technology for fluoroscopy-guided surgical interventions. However, traditional registration methods relying on a single X-ray image into surgical navigation systems. This study proposes a novel 2D/3D registration approach utilizing biplanar X-ray images combined with computed tomography (CT) to significantly reduce registration and navigation errors. The method is successfully implemented in a surgical navigation system, enhancing its precision and reliability.</div></div><div><h3>Methods:</h3><div>First, we simultaneously register the frontal and lateral X-ray images with the CT image, enabling mutual complementation and more precise localization. Additionally, we introduce a novel similarity measure for image comparison, providing a more robust cost function for the optimization algorithm. Furthermore, a multi-resolution strategy is employed to enhance registration efficiency. Lastly, we propose a more accurate coordinate transformation method, based on projection and 3D reconstruction, to improve the precision of surgical navigation systems.<em>Results:</em> We conducted registration and navigation experiments using pelvic, spinal, and femur phantoms. The navigation results demonstrated that the feature registration errors (FREs) in the three experiments were 0.505±0.063 mm, 0.515±0.055 mm, and 0.577±0.056 mm, respectively. Compared to the point-to-point (PTP) registration method based on anatomical landmarks, our method reduced registration errors by 31.3%, 23.9%, and 26.3%, respectively.</div></div><div><h3>Conclusion:</h3><div>The results demonstrate that our method significantly reduces registration and navigation errors, highlighting its potential for application across various anatomical sites. Our code is available at: <span><span>https://github.com/SJTUdemon/2D-3D-Registration</span><svg><path></path></svg></span></div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004371","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objectives:
Image-based 2D/3D registration is a crucial technology for fluoroscopy-guided surgical interventions. However, traditional registration methods relying on a single X-ray image into surgical navigation systems. This study proposes a novel 2D/3D registration approach utilizing biplanar X-ray images combined with computed tomography (CT) to significantly reduce registration and navigation errors. The method is successfully implemented in a surgical navigation system, enhancing its precision and reliability.
Methods:
First, we simultaneously register the frontal and lateral X-ray images with the CT image, enabling mutual complementation and more precise localization. Additionally, we introduce a novel similarity measure for image comparison, providing a more robust cost function for the optimization algorithm. Furthermore, a multi-resolution strategy is employed to enhance registration efficiency. Lastly, we propose a more accurate coordinate transformation method, based on projection and 3D reconstruction, to improve the precision of surgical navigation systems.Results: We conducted registration and navigation experiments using pelvic, spinal, and femur phantoms. The navigation results demonstrated that the feature registration errors (FREs) in the three experiments were 0.505±0.063 mm, 0.515±0.055 mm, and 0.577±0.056 mm, respectively. Compared to the point-to-point (PTP) registration method based on anatomical landmarks, our method reduced registration errors by 31.3%, 23.9%, and 26.3%, respectively.
Conclusion:
The results demonstrate that our method significantly reduces registration and navigation errors, highlighting its potential for application across various anatomical sites. Our code is available at: https://github.com/SJTUdemon/2D-3D-Registration
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.