{"title":"The energy-diminishing weak Galerkin finite element method for the computation of ground state and excited states in Bose-Einstein condensates","authors":"Lin Yang , Xiang-Gui Li , Wei Yan , Ran Zhang","doi":"10.1016/j.jcp.2024.113497","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we employ the weak Galerkin (WG) finite element method and the imaginary time method to compute both the ground state and the excited states in Bose-Einstein condensate (BEC) which is governed by the Gross-Pitaevskii equation (GPE). First, we use the imaginary time method for GPE to get the nonlinear parabolic partial differential equation. Subsequently, we apply the WG method to spatially discretize the parabolic equation. This yields a semi-discrete scheme, in which an energy function is explicitly defined. For the case <span><math><mi>β</mi><mo>⩾</mo><mn>0</mn></math></span>, we demonstrate that the energy is diminishing with respect to time <em>t</em> at each time step. Applying the backward Euler scheme for temporal discretization yields a fully discrete scheme. For the case <span><math><mi>β</mi><mo>=</mo><mn>0</mn></math></span>, we provide a mathematical justification, establishing the convergence analysis for the numerical solution of the ground state. Moreover, based on the theory of solving eigenvalue problems using the WG method, we present the error estimates between the ground state and its numerical solution under the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norms. Numerical experiments are provided to illustrate the effectiveness of the proposed schemes. Moreover, the results indicate that our method also can compute the first excited state, achieving optimal convergence orders.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"520 ","pages":"Article 113497"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007459","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we employ the weak Galerkin (WG) finite element method and the imaginary time method to compute both the ground state and the excited states in Bose-Einstein condensate (BEC) which is governed by the Gross-Pitaevskii equation (GPE). First, we use the imaginary time method for GPE to get the nonlinear parabolic partial differential equation. Subsequently, we apply the WG method to spatially discretize the parabolic equation. This yields a semi-discrete scheme, in which an energy function is explicitly defined. For the case , we demonstrate that the energy is diminishing with respect to time t at each time step. Applying the backward Euler scheme for temporal discretization yields a fully discrete scheme. For the case , we provide a mathematical justification, establishing the convergence analysis for the numerical solution of the ground state. Moreover, based on the theory of solving eigenvalue problems using the WG method, we present the error estimates between the ground state and its numerical solution under the and norms. Numerical experiments are provided to illustrate the effectiveness of the proposed schemes. Moreover, the results indicate that our method also can compute the first excited state, achieving optimal convergence orders.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.