The energy-diminishing weak Galerkin finite element method for the computation of ground state and excited states in Bose-Einstein condensates

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lin Yang , Xiang-Gui Li , Wei Yan , Ran Zhang
{"title":"The energy-diminishing weak Galerkin finite element method for the computation of ground state and excited states in Bose-Einstein condensates","authors":"Lin Yang ,&nbsp;Xiang-Gui Li ,&nbsp;Wei Yan ,&nbsp;Ran Zhang","doi":"10.1016/j.jcp.2024.113497","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we employ the weak Galerkin (WG) finite element method and the imaginary time method to compute both the ground state and the excited states in Bose-Einstein condensate (BEC) which is governed by the Gross-Pitaevskii equation (GPE). First, we use the imaginary time method for GPE to get the nonlinear parabolic partial differential equation. Subsequently, we apply the WG method to spatially discretize the parabolic equation. This yields a semi-discrete scheme, in which an energy function is explicitly defined. For the case <span><math><mi>β</mi><mo>⩾</mo><mn>0</mn></math></span>, we demonstrate that the energy is diminishing with respect to time <em>t</em> at each time step. Applying the backward Euler scheme for temporal discretization yields a fully discrete scheme. For the case <span><math><mi>β</mi><mo>=</mo><mn>0</mn></math></span>, we provide a mathematical justification, establishing the convergence analysis for the numerical solution of the ground state. Moreover, based on the theory of solving eigenvalue problems using the WG method, we present the error estimates between the ground state and its numerical solution under the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norms. Numerical experiments are provided to illustrate the effectiveness of the proposed schemes. Moreover, the results indicate that our method also can compute the first excited state, achieving optimal convergence orders.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"520 ","pages":"Article 113497"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007459","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we employ the weak Galerkin (WG) finite element method and the imaginary time method to compute both the ground state and the excited states in Bose-Einstein condensate (BEC) which is governed by the Gross-Pitaevskii equation (GPE). First, we use the imaginary time method for GPE to get the nonlinear parabolic partial differential equation. Subsequently, we apply the WG method to spatially discretize the parabolic equation. This yields a semi-discrete scheme, in which an energy function is explicitly defined. For the case β0, we demonstrate that the energy is diminishing with respect to time t at each time step. Applying the backward Euler scheme for temporal discretization yields a fully discrete scheme. For the case β=0, we provide a mathematical justification, establishing the convergence analysis for the numerical solution of the ground state. Moreover, based on the theory of solving eigenvalue problems using the WG method, we present the error estimates between the ground state and its numerical solution under the H1 and L2 norms. Numerical experiments are provided to illustrate the effectiveness of the proposed schemes. Moreover, the results indicate that our method also can compute the first excited state, achieving optimal convergence orders.
计算玻色-爱因斯坦凝聚态基态和激发态的能量递减弱伽勒金有限元法
本文采用弱 Galerkin(WG)有限元法和虚时间法计算受格罗斯-皮塔耶夫斯基方程(GPE)支配的玻色-爱因斯坦凝聚态(BEC)的基态和激发态。首先,我们使用虚时间法求解 GPE 的非线性抛物线偏微分方程。随后,我们采用 WG 方法对抛物方程进行空间离散化。这样就得到了一个半离散方案,其中明确定义了能量函数。对于 β⩾0 的情况,我们证明能量在每个时间步相对于时间 t 是递减的。应用后向欧拉方案进行时间离散化,可得到一个完全离散的方案。对于 β=0 的情况,我们提供了数学理由,建立了基态数值解的收敛分析。此外,基于使用 WG 方法求解特征值问题的理论,我们提出了 H1 和 L2 规范下基态与其数值解之间的误差估计。我们还提供了数值实验来说明所提方案的有效性。此外,结果表明我们的方法也能计算第一激发态,并达到最佳收敛阶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信