{"title":"In-situ observation of irradiation-induced amorphization on fluorapatites doped with REEs (REE = La, Nd, Sm, Tb, Er, and Lu) of various ionic radii","authors":"Xiaotian Hu, Shengming Jiang, Jiemin Zhu, Jian Zhang","doi":"10.1016/j.jnucmat.2024.155425","DOIUrl":null,"url":null,"abstract":"<div><div>The immobilization of nuclear waste containing various actinides requires the actinide host phases to maintain long-term stability under alpha decay damage. In this study, the irradiation resistance to amorphization of fluorapatite compounds with the formula of Ca<sub>9</sub>REE(PO<sub>4</sub>)<sub>5</sub>(SiO<sub>4</sub>)F<sub>2</sub> (REE: rare earth element, REE = La, Nd, Sm, Tb, Er, and Lu) were investigated, where REEs<sup>3+</sup> with decreased ionic radii were used to simulate actinides in immobilization wastes. <em>In-situ</em> 800 keV Kr<sup>2+</sup> irradiation was performed with varying temperatures. The critical amorphization temperature, <span><math><msub><mi>T</mi><mi>c</mi></msub></math></span>, for these apatites were found to be 513.8, 503.7, 494.1, 493.7, 483.1 and 460.9 K, respectively. <span><math><msub><mi>T</mi><mi>c</mi></msub></math></span> shows a distinct decreasing trend with the decrease of ionic radii of doped REEs<sup>3+</sup>, indicating enhanced irradiation resistance. The selected REEs exhibited increasing electronegativity, which correlated with an increase in bonding ionic properties. This trend is unfavourable for the formation of a covalent network, thereby enhancing irradiation resistance. Besides, the decreased ionic radii of doped REEs<sup>3+</sup> enhanced the migration and diffusion rates of smaller REE<sup>3+</sup> after the collision cascade process. Additionally, the dopant REEs<sup>3+</sup> showed a significant preference for CaⅡ sites. This preference decreased as the ionic radius of doped REE<sup>3+</sup> and reduced the average ionic radius of CaⅠ sites. Consequently, the one-dimensional channel in apatite became larger, facilitating the rearrangement of <em>F</em><sup>−</sup> ion. This study investigated the irradiation-induced amorphization of REE-silicon doped fluorapatites and the results highlighted the importance of composition of immobilization materials on irradiation performance.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155425"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005269","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The immobilization of nuclear waste containing various actinides requires the actinide host phases to maintain long-term stability under alpha decay damage. In this study, the irradiation resistance to amorphization of fluorapatite compounds with the formula of Ca9REE(PO4)5(SiO4)F2 (REE: rare earth element, REE = La, Nd, Sm, Tb, Er, and Lu) were investigated, where REEs3+ with decreased ionic radii were used to simulate actinides in immobilization wastes. In-situ 800 keV Kr2+ irradiation was performed with varying temperatures. The critical amorphization temperature, , for these apatites were found to be 513.8, 503.7, 494.1, 493.7, 483.1 and 460.9 K, respectively. shows a distinct decreasing trend with the decrease of ionic radii of doped REEs3+, indicating enhanced irradiation resistance. The selected REEs exhibited increasing electronegativity, which correlated with an increase in bonding ionic properties. This trend is unfavourable for the formation of a covalent network, thereby enhancing irradiation resistance. Besides, the decreased ionic radii of doped REEs3+ enhanced the migration and diffusion rates of smaller REE3+ after the collision cascade process. Additionally, the dopant REEs3+ showed a significant preference for CaⅡ sites. This preference decreased as the ionic radius of doped REE3+ and reduced the average ionic radius of CaⅠ sites. Consequently, the one-dimensional channel in apatite became larger, facilitating the rearrangement of F− ion. This study investigated the irradiation-induced amorphization of REE-silicon doped fluorapatites and the results highlighted the importance of composition of immobilization materials on irradiation performance.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.