Sho Kano , Huilong Yang , Masami Ando , Dai Hamaguchi , Takashi Nozawa , Hiroyasu Tanigawa , Kenta Yoshida , Tamaki Shibayama , Hiroaki Abe
{"title":"TEM-EELS analysis reveals the W-atom mediated radiation-induced amorphization in M23C6","authors":"Sho Kano , Huilong Yang , Masami Ando , Dai Hamaguchi , Takashi Nozawa , Hiroyasu Tanigawa , Kenta Yoshida , Tamaki Shibayama , Hiroaki Abe","doi":"10.1016/j.jnucmat.2024.155439","DOIUrl":null,"url":null,"abstract":"<div><div>To gain a mechanistic understanding of the phase stability of M<sub>23</sub>C<sub>6</sub> upon irradiation, the bulk W-doped M<sub>23</sub>C<sub>6</sub> (Cr-W-C system) in the range of 0–12 at.% W concentration was prepared and subjected to helium beam irradiation, following with a thorough electron energy loss spectroscopy (EELS) analysis. Radiation-induced amorphization (RIA) was observed only at the 4 W sample with a W concentration of ∼12 at.%. Analysis of the low-loss spectrum showed that the inelastic mean free path (<em>λ</em>) could be applied an effective indicator of the presence of an amorphous phase. The white line ratio of the carbon <em>K</em>-edge spectrum showed that the chemical bonding state in the crystalline state is mainly 2<em>p<sup>3/2</sup></em> bonding, and it changes to dominantly 2<em>p<sup>1/2</sup></em> bonding accompanying with the crystal-to-amorphous (c-a) transition. Discussion on the relationship between the change in <em>λ</em> (<em>Δλ</em>) and the lattice parameter (<em>Δa</em>) due to irradiation reveals that <em>Δa</em> is not dependent on <em>Δλ</em>, indicating that <em>Δλ</em> is mainly caused by the volume expansion due to the c-a transition. In addition, a crystalline state is remained even after a lattice parameter change of ∼1.5 % in 0 W and 1W-samples, whereas, a lattice expansion of ∼0.2 % would trigger the occurrence of crystal-to-amorphous transition in the 4W-sample. The detailed EELS analysis demonstrated that the constitutional W atoms play an important role in facilitating the occurrence of RIA in M<sub>23</sub>C<sub>6</sub>, that is, the phase instability accompanying the lattice expansion due to irradiation was emphasized by the addition of W in M<sub>23</sub>C<sub>6</sub>. The insights obtained here suggest that a higher W concentration in M<sub>23</sub>C<sub>6</sub> is more susceptible to RIA, and therefore the resistance to amorphization is achievable by decreasing the W concentration in the steels.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155439"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005397","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To gain a mechanistic understanding of the phase stability of M23C6 upon irradiation, the bulk W-doped M23C6 (Cr-W-C system) in the range of 0–12 at.% W concentration was prepared and subjected to helium beam irradiation, following with a thorough electron energy loss spectroscopy (EELS) analysis. Radiation-induced amorphization (RIA) was observed only at the 4 W sample with a W concentration of ∼12 at.%. Analysis of the low-loss spectrum showed that the inelastic mean free path (λ) could be applied an effective indicator of the presence of an amorphous phase. The white line ratio of the carbon K-edge spectrum showed that the chemical bonding state in the crystalline state is mainly 2p3/2 bonding, and it changes to dominantly 2p1/2 bonding accompanying with the crystal-to-amorphous (c-a) transition. Discussion on the relationship between the change in λ (Δλ) and the lattice parameter (Δa) due to irradiation reveals that Δa is not dependent on Δλ, indicating that Δλ is mainly caused by the volume expansion due to the c-a transition. In addition, a crystalline state is remained even after a lattice parameter change of ∼1.5 % in 0 W and 1W-samples, whereas, a lattice expansion of ∼0.2 % would trigger the occurrence of crystal-to-amorphous transition in the 4W-sample. The detailed EELS analysis demonstrated that the constitutional W atoms play an important role in facilitating the occurrence of RIA in M23C6, that is, the phase instability accompanying the lattice expansion due to irradiation was emphasized by the addition of W in M23C6. The insights obtained here suggest that a higher W concentration in M23C6 is more susceptible to RIA, and therefore the resistance to amorphization is achievable by decreasing the W concentration in the steels.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.