Christopher Petersson , Peter Szakalos , Rachel Pettersson , Mats Lundberg
{"title":"Influence of liquid lead and lead-bismuth eutectic on three alumina forming austenitic (AFA) steels through slow strain rate testing","authors":"Christopher Petersson , Peter Szakalos , Rachel Pettersson , Mats Lundberg","doi":"10.1016/j.jnucmat.2024.155415","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid metal embrittlement (LME) in three newly developed alumina-forming austenitic (AFA) alloys, two 50 kg batches and one 5-ton heat, was studied in the temperature range 350–600 °C in liquid Pb and 140–600 °C in LBE using slow strain rate testing (SSRT) in a low-oxygen environment. No significant decrease in the engineering strain was observed in either environment. However, the presence of secondary cracks along the length of the specimen and brittle intergranular areas on the fracture surfaces indicates that the AFA alloys do show a minor degree of embrittlement above 570 °C. This appears to be related to grain boundary wetting by Pb/LBE. At temperatures below 570 °C, this wetting effect does not seem to be strong enough to induce LME in the alloys, and their ability to form a sufficiently protective oxide means that they remain unaffected by LME. The results indicate that the AFA alloy group can perform sufficiently well in liquid Pb/LBE environments, and long-term testing should be carried out to determine their viability as candidate materials for use in Pb- and LBE-based cooling systems.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155415"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005166","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid metal embrittlement (LME) in three newly developed alumina-forming austenitic (AFA) alloys, two 50 kg batches and one 5-ton heat, was studied in the temperature range 350–600 °C in liquid Pb and 140–600 °C in LBE using slow strain rate testing (SSRT) in a low-oxygen environment. No significant decrease in the engineering strain was observed in either environment. However, the presence of secondary cracks along the length of the specimen and brittle intergranular areas on the fracture surfaces indicates that the AFA alloys do show a minor degree of embrittlement above 570 °C. This appears to be related to grain boundary wetting by Pb/LBE. At temperatures below 570 °C, this wetting effect does not seem to be strong enough to induce LME in the alloys, and their ability to form a sufficiently protective oxide means that they remain unaffected by LME. The results indicate that the AFA alloy group can perform sufficiently well in liquid Pb/LBE environments, and long-term testing should be carried out to determine their viability as candidate materials for use in Pb- and LBE-based cooling systems.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.