Explicit construction of mixed dominating sets in generalized Petersen graphs

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Meysam Rajaati Bavil Olyaei, Mohsen Alambardar Meybodi, Mohammad Reza Hooshmandasl, Ali Shakiba
{"title":"Explicit construction of mixed dominating sets in generalized Petersen graphs","authors":"Meysam Rajaati Bavil Olyaei, Mohsen Alambardar Meybodi, Mohammad Reza Hooshmandasl, Ali Shakiba","doi":"10.1007/s10878-024-01222-x","DOIUrl":null,"url":null,"abstract":"<p>A mixed dominating set in a graph <span>\\(G=(V,E)\\)</span> is a subset <i>D</i> of vertices and edges of <i>G</i> such that every vertex and edge in <span>\\((V\\cup E)\\setminus D\\)</span> is a neighbor of some elements in <i>D</i>. The mixed domination number of <i>G</i>, denoted by <span>\\(\\gamma _{\\textrm{md}}(G)\\)</span>, is the minimum size among all mixed dominating sets of <i>G</i>. For natural numbers <i>n</i> and <i>k</i>, where <span>\\(n &gt; 2k\\)</span>, a generalized Petersen graph <i>P</i>(<i>n</i>, <i>k</i>) is a graph with vertices <span>\\( \\{v_0, v_1, \\ldots , v_{n-1} \\}\\cup \\{u_0, u_1, \\ldots , u_{n-1}\\}\\)</span> and edges <span>\\(\\cup _{0 \\le i \\le n-1} \\{v_{i} v_{i+1}, v_iu_i, u_iu_{i+k}\\}\\)</span> where subscripts are modulo <i>n</i>. In this paper, we explicitly construct an optimal mixed dominating set for generalized Petersen graphs <i>P</i>(<i>n</i>, <i>k</i>) for <span>\\(k \\in \\{1, 2\\}\\)</span>. Moreover, we establish some upper bound on mixed domination number for other generalized Petersen graphs.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"229 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01222-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A mixed dominating set in a graph \(G=(V,E)\) is a subset D of vertices and edges of G such that every vertex and edge in \((V\cup E)\setminus D\) is a neighbor of some elements in D. The mixed domination number of G, denoted by \(\gamma _{\textrm{md}}(G)\), is the minimum size among all mixed dominating sets of G. For natural numbers n and k, where \(n > 2k\), a generalized Petersen graph P(nk) is a graph with vertices \( \{v_0, v_1, \ldots , v_{n-1} \}\cup \{u_0, u_1, \ldots , u_{n-1}\}\) and edges \(\cup _{0 \le i \le n-1} \{v_{i} v_{i+1}, v_iu_i, u_iu_{i+k}\}\) where subscripts are modulo n. In this paper, we explicitly construct an optimal mixed dominating set for generalized Petersen graphs P(nk) for \(k \in \{1, 2\}\). Moreover, we establish some upper bound on mixed domination number for other generalized Petersen graphs.

Abstract Image

广义彼得森图中混合支配集的显式构造
图 \(G=(V,E)\) 中的混合支配集是 G 的顶点和边的子集 D,使得 \((V\cup E)\setminus D\) 中的每个顶点和边都是 D 中某些元素的邻居。G 的混合支配数表示为 \(\gamma_{\textrm{md}}(G)\),是 G 的所有混合支配集中最小的大小。对于自然数 n 和 k,其中 \(n >;2k),广义彼得森图 P(n, k) 是一个具有顶点 \( \{v_0, v_1, \ldots , v_{n-1} \}cup \{u_0, u_1, \ldots 、u_{n-1}\}) 和边 \(\cup _{0 \le i \le n-1} \{v_{i} v_{i+1}, v_iu_i, u_iu_{i+k}}\}),其中下标是 modulo n。在本文中,我们为 \(k \in \{1, 2\}\) 明确地构建了广义彼得森图 P(n, k) 的最优混合支配集。此外,我们还为其他广义彼得森图建立了一些混合支配数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信