Weighted variable anisotropic Hardy spaces

IF 1.4 3区 数学 Q1 MATHEMATICS
Yao He
{"title":"Weighted variable anisotropic Hardy spaces","authors":"Yao He","doi":"10.1007/s13324-024-00976-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce the weighted variable anisotropic Hardy spaces <span>\\(H_{\\omega ,A}^{p(\\cdot )}\\left( \\mathbb {R}^n\\right) \\)</span> via the nontangential grand maximal function. We also establish the atomic decompositions for the weighted variable anisotropic Hardy spaces <span>\\(H_{\\omega ,A}^{p(\\cdot )}\\left( \\mathbb {R}^n\\right) \\)</span>. In addition, we obtain the duality between <span>\\(H_{\\omega ,A}^{p(\\cdot )}\\left( \\mathbb {R}^n\\right) \\)</span> and the weighted anisotropic Campanato spaces with variable exponents. We also obtain equivalent characterizations of the weighted variable anisotropic Hardy spaces by means of the anisotropic Lusin area function, the Littlewood–Paley <i>g</i>-function and the Littlewood–Paley <span>\\(g_\\lambda ^*\\)</span>-function. As applications, we study the boundedness of Calderón–Zygmund singular integral operators on the weighted variable anisotropic Hardy spaces.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00976-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the weighted variable anisotropic Hardy spaces \(H_{\omega ,A}^{p(\cdot )}\left( \mathbb {R}^n\right) \) via the nontangential grand maximal function. We also establish the atomic decompositions for the weighted variable anisotropic Hardy spaces \(H_{\omega ,A}^{p(\cdot )}\left( \mathbb {R}^n\right) \). In addition, we obtain the duality between \(H_{\omega ,A}^{p(\cdot )}\left( \mathbb {R}^n\right) \) and the weighted anisotropic Campanato spaces with variable exponents. We also obtain equivalent characterizations of the weighted variable anisotropic Hardy spaces by means of the anisotropic Lusin area function, the Littlewood–Paley g-function and the Littlewood–Paley \(g_\lambda ^*\)-function. As applications, we study the boundedness of Calderón–Zygmund singular integral operators on the weighted variable anisotropic Hardy spaces.

加权变异各向异性哈代空间
在本文中,我们通过非切线大极值函数引入了加权变量各向异性哈代空间(H_{\omega ,A}^{p(\cdot )}\left( \mathbb {R}^n\right) \)。我们还建立了加权变量各向异性哈代空间的原子分解 \(H_{\omega ,A}^{p(\cdot )}\left(\mathbb {R}^n\right) \)。此外,我们还得到了 \(H_{\omega ,A}^{p(\cdot )}left( \mathbb {R}^n\right) \)与带可变指数的加权各向异性坎帕纳托空间之间的对偶性。我们还通过各向异性 Lusin 面积函数、Littlewood-Paley g 函数和 Littlewood-Paley \(g_\lambda ^*\)函数得到了加权各向异性哈代空间的等价特征。作为应用,我们研究了加权变量各向异性哈代空间上卡尔德龙-齐格蒙德奇异积分算子的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信