Dynamic Behaviors of a Two-Cable Network With Two Negative Stiffness Dampers and a Cross-Tie

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Mengyu Li, Yanwei Xu, Hui Gao, Zhipeng Cheng, Zhihao Wang
{"title":"Dynamic Behaviors of a Two-Cable Network With Two Negative Stiffness Dampers and a Cross-Tie","authors":"Mengyu Li,&nbsp;Yanwei Xu,&nbsp;Hui Gao,&nbsp;Zhipeng Cheng,&nbsp;Zhihao Wang","doi":"10.1155/2024/4254998","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Due to their structural characteristics, stay cables are inherently susceptible to vibrations. Addressing this issue, the research explores the dynamics of a two-cable network system, emphasizing the impact of composite vibration control methods. A system consisting of two horizontal cables is presented, each fitted with negative stiffness dampers (NSDs) at their anchored ends and interconnected by a cross-tie. A complex eigenvalue equation, formulated based on displacement boundary conditions and the continuity of displacement and force, is validated through numerical simulations. The multimode damping effects of the dual NSDs and cross-tie on the two-cable network are explored through parameter analysis and optimization. The results demonstrate that reducing the stiffness of the cross-tie improves the fundamental modal damping ratio, whereas increasing its stiffness or positioning it close to the cable’s midpoint enhances the vibration frequency. The incorporation of NSDs into the hybrid system significantly increases the maximum damping ratio while lowering the optimal damping coefficient. This study presents a method for calculating the range of negative stiffness values, providing insights into the selection of installation positions and stiffness for the cross-tie, thereby facilitating the design of highly effective multimode vibration control solutions for stay cables.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4254998","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4254998","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their structural characteristics, stay cables are inherently susceptible to vibrations. Addressing this issue, the research explores the dynamics of a two-cable network system, emphasizing the impact of composite vibration control methods. A system consisting of two horizontal cables is presented, each fitted with negative stiffness dampers (NSDs) at their anchored ends and interconnected by a cross-tie. A complex eigenvalue equation, formulated based on displacement boundary conditions and the continuity of displacement and force, is validated through numerical simulations. The multimode damping effects of the dual NSDs and cross-tie on the two-cable network are explored through parameter analysis and optimization. The results demonstrate that reducing the stiffness of the cross-tie improves the fundamental modal damping ratio, whereas increasing its stiffness or positioning it close to the cable’s midpoint enhances the vibration frequency. The incorporation of NSDs into the hybrid system significantly increases the maximum damping ratio while lowering the optimal damping coefficient. This study presents a method for calculating the range of negative stiffness values, providing insights into the selection of installation positions and stiffness for the cross-tie, thereby facilitating the design of highly effective multimode vibration control solutions for stay cables.

Abstract Image

带有两个负刚度阻尼器和一个交叉拉杆的双缆网络的动态行为
由于其结构特点,留缆本身容易受到振动的影响。针对这一问题,本研究探讨了双缆网络系统的动力学,强调了复合振动控制方法的影响。该系统由两根水平缆绳组成,每根缆绳的锚固端都安装了负刚度阻尼器(NSD),并通过一根横拉杆相互连接。通过数值模拟验证了基于位移边界条件和位移与力连续性的复特征值方程。通过参数分析和优化,探讨了双 NSD 和横拉杆对双缆网络的多模阻尼效应。结果表明,降低横拉杆的刚度可提高基本模态阻尼比,而增加其刚度或将其置于靠近电缆中点的位置则可提高振动频率。将 NSD 纳入混合系统可显著提高最大阻尼比,同时降低最佳阻尼系数。本研究提出了一种计算负刚度值范围的方法,为选择横拉杆的安装位置和刚度提供了启示,从而有助于为留置电缆设计高效的多模振动控制解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信