Organic Carbon and Ca-Rich Carbonate Detections in Soils of the Northern Plains, Mars: Evaluation of Unreported Data From the Mars Phoenix Scout's Thermal Evolved Gas Analyzer (TEGA)
B. Sutter, P. D. Archer, P. B. Niles, D. W. Ming, D. Hamara, W. V. Boynton
{"title":"Organic Carbon and Ca-Rich Carbonate Detections in Soils of the Northern Plains, Mars: Evaluation of Unreported Data From the Mars Phoenix Scout's Thermal Evolved Gas Analyzer (TEGA)","authors":"B. Sutter, P. D. Archer, P. B. Niles, D. W. Ming, D. Hamara, W. V. Boynton","doi":"10.1029/2024JE008335","DOIUrl":null,"url":null,"abstract":"<p>The Thermal Evolved Gas Analyzer (TEGA) analysis of surface and icy subsurface Phoenix landing site soils consisted of low (300–700°C) and high (>700°C) temperature CO<sub>2</sub> evolutions that were attributed to organic carbon (83–1,484 μgC/g) and Ca-rich carbonate (1.1–2.6 wt.%). Total carbon abundances ranged from 1,143 to 4,905 µgC/g, which is the highest soil carbon concentration so far detected on Mars. Low temperature CO<sub>2</sub> was attributed to oxidized organic C (e.g., oxalates, acetates), while hydrocarbon combustion was indicated in two soils by the detection of coevolved CO<sub>2</sub> and O<sub>2</sub> (perchlorate). Combustion reactions may have prevented the detection of hydrocarbon masses in the Phoenix landing site soils. Organic C was likely derived from meteoritic and igneous/hydrothermal sources, but microbiological sources cannot be excluded. CO<sub>2</sub> evolved at high temperatures was consistent with Ca-rich carbonate along with possible minor contributions from macromolecular organic carbon and mineral/glass vesicle CO<sub>2</sub>. Carbon detected in the Phoenix landing site soil and other landing site soils and sands (e.g., Gale/Jezero craters) would be consistent with global organic C and carbonate in soils and sand across Mars. However, oxidizing water thin films derived from the near-surface ice in the Phoenix soils favor Ca-carbonate over Fe-carbonate, which is likely more stable in the ice-free regions of Mars (e.g., Gale/Jezero craters). The global carbon budget on Mars inferred from these results emphasizes that Mars Sample Return should yield carbon bearing soil/rock that would allow the identification of the origin of carbon and any possible connections to ancient martian microbiology.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008335","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008335","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Thermal Evolved Gas Analyzer (TEGA) analysis of surface and icy subsurface Phoenix landing site soils consisted of low (300–700°C) and high (>700°C) temperature CO2 evolutions that were attributed to organic carbon (83–1,484 μgC/g) and Ca-rich carbonate (1.1–2.6 wt.%). Total carbon abundances ranged from 1,143 to 4,905 µgC/g, which is the highest soil carbon concentration so far detected on Mars. Low temperature CO2 was attributed to oxidized organic C (e.g., oxalates, acetates), while hydrocarbon combustion was indicated in two soils by the detection of coevolved CO2 and O2 (perchlorate). Combustion reactions may have prevented the detection of hydrocarbon masses in the Phoenix landing site soils. Organic C was likely derived from meteoritic and igneous/hydrothermal sources, but microbiological sources cannot be excluded. CO2 evolved at high temperatures was consistent with Ca-rich carbonate along with possible minor contributions from macromolecular organic carbon and mineral/glass vesicle CO2. Carbon detected in the Phoenix landing site soil and other landing site soils and sands (e.g., Gale/Jezero craters) would be consistent with global organic C and carbonate in soils and sand across Mars. However, oxidizing water thin films derived from the near-surface ice in the Phoenix soils favor Ca-carbonate over Fe-carbonate, which is likely more stable in the ice-free regions of Mars (e.g., Gale/Jezero craters). The global carbon budget on Mars inferred from these results emphasizes that Mars Sample Return should yield carbon bearing soil/rock that would allow the identification of the origin of carbon and any possible connections to ancient martian microbiology.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.