A variational construction of Hamiltonian stationary surfaces with isolated Schoen–Wolfson conical singularities

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Filippo Gaia, Gerard Orriols, Tristan Rivière
{"title":"A variational construction of Hamiltonian stationary surfaces with isolated Schoen–Wolfson conical singularities","authors":"Filippo Gaia,&nbsp;Gerard Orriols,&nbsp;Tristan Rivière","doi":"10.1002/cpa.22220","DOIUrl":null,"url":null,"abstract":"<p>We construct using variational methods Hamiltonian stationary surfaces with isolated Schoen–Wolfson conical singularities. We obtain these surfaces through a convergence process reminiscent to the Ginzburg–Landau asymptotic analysis in the strongly repulsive regime introduced by Bethuel, Brezis and Hélein. We describe in particular how the prescription of Schoen–Wolfson conical singularities is related to optimal Wente constants.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22220","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We construct using variational methods Hamiltonian stationary surfaces with isolated Schoen–Wolfson conical singularities. We obtain these surfaces through a convergence process reminiscent to the Ginzburg–Landau asymptotic analysis in the strongly repulsive regime introduced by Bethuel, Brezis and Hélein. We describe in particular how the prescription of Schoen–Wolfson conical singularities is related to optimal Wente constants.

具有孤立 Schoen-Wolfson 圆锥奇点的哈密顿静止面的变分构造
我们利用变分法构建了具有孤立肖恩-沃尔夫森圆锥奇点的哈密顿静止曲面。我们通过一个收敛过程来获得这些表面,这个过程让人联想到 Bethuel、Brezis 和 Hélein 提出的强排斥机制中的金兹堡-兰道渐近分析。我们特别描述了舍恩-沃尔夫森锥奇点的处方与最佳温特常数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信