Daria Jóźwiak-Niedźwiedzka , Marta Choinska Colombel , Aneta Brachaczek , Mariusz Dąbrowski , Jakub Ośko , Michał Kuć
{"title":"Gas permeability and gamma ray shielding properties of concrete for nuclear applications","authors":"Daria Jóźwiak-Niedźwiedzka , Marta Choinska Colombel , Aneta Brachaczek , Mariusz Dąbrowski , Jakub Ośko , Michał Kuć","doi":"10.1016/j.nucengdes.2024.113616","DOIUrl":null,"url":null,"abstract":"<div><div>Concrete used in nuclear applications faces significant durability challenges due to degradation from radiation, thermal stresses, and chemical reactions. These issues highlight the critical need for impermeable concrete shields to prevent radioactive leaks and protect against harmful radiation. This study examines how concrete composition affects gas permeability and gamma radiation shielding properties. Three coarse aggregates—amphibolite (reference), magnetite, and serpentine—and two cement types (ordinary and slag) were tested, with concrete densities ranging from 2309 to 3538 kg/m<sup>3</sup>. Gas permeability was measured using a Cembureau-type constant head permeameter, and gamma shielding was assessed through the linear attenuation coefficient (µ) and half-value layer (HVL) at <sup>137</sup>Cs decay energies. The results revealed significant variations in gas permeability and gamma ray shielding based on aggregate and cement type, with observable relationships between gas permeability, HVL, and concrete density. The results obtained from the presented research will contribute to increasing the safety, durability and cost-effectiveness of concrete constructions and maintenance of nuclear facilities.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"429 ","pages":"Article 113616"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007167","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Concrete used in nuclear applications faces significant durability challenges due to degradation from radiation, thermal stresses, and chemical reactions. These issues highlight the critical need for impermeable concrete shields to prevent radioactive leaks and protect against harmful radiation. This study examines how concrete composition affects gas permeability and gamma radiation shielding properties. Three coarse aggregates—amphibolite (reference), magnetite, and serpentine—and two cement types (ordinary and slag) were tested, with concrete densities ranging from 2309 to 3538 kg/m3. Gas permeability was measured using a Cembureau-type constant head permeameter, and gamma shielding was assessed through the linear attenuation coefficient (µ) and half-value layer (HVL) at 137Cs decay energies. The results revealed significant variations in gas permeability and gamma ray shielding based on aggregate and cement type, with observable relationships between gas permeability, HVL, and concrete density. The results obtained from the presented research will contribute to increasing the safety, durability and cost-effectiveness of concrete constructions and maintenance of nuclear facilities.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.