Simulated temperature of a tungsten spot facing large plasma heat loads

IF 2.3 2区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY
J. Moritz , S. Heuraux , M. Lesur , E. Gravier , F. Brochard , L. Marot , P. Hiret
{"title":"Simulated temperature of a tungsten spot facing large plasma heat loads","authors":"J. Moritz ,&nbsp;S. Heuraux ,&nbsp;M. Lesur ,&nbsp;E. Gravier ,&nbsp;F. Brochard ,&nbsp;L. Marot ,&nbsp;P. Hiret","doi":"10.1016/j.nme.2024.101753","DOIUrl":null,"url":null,"abstract":"<div><div>In fusion devices like ITER, plasma-wall interactions are a significant concern due to the high heat fluxes, often tens of MW/m<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, impacting the first wall. These intense heat fluxes can lead to the formation of hot spots on components facing the plasma, such as tungsten, used in divertor plates and antennas. This results in material erosion and plasma core contamination. Our study investigates the thermal behavior of tungsten surfaces under these conditions using fluid modeling and Particle-In-Cell (PIC) simulations. We examine the effects of thermionic electron emission on the sheath potential and heat transmission. The simulations reveal that thermionic emission can decrease the sheath voltage, increasing the surface temperature due to enhanced heat flux due to electrons. Additionally, we explore how the ratio between the spot size (<span><math><mi>S</mi></math></span>) and the surrounding surface length (<span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span>) influences the surface temperature. We find that a higher <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>y</mi></mrow></msub><mo>/</mo><mi>S</mi></mrow></math></span> ratio allows the surface to reach higher temperatures before the system enters the space-charge-limited regime, where thermionic current is maximized and considerably larger than the case where the entire surface is emissive (<span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>y</mi></mrow></msub><mo>=</mo><mi>S</mi></mrow></math></span>).</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"41 ","pages":"Article 101753"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124001765","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In fusion devices like ITER, plasma-wall interactions are a significant concern due to the high heat fluxes, often tens of MW/m2, impacting the first wall. These intense heat fluxes can lead to the formation of hot spots on components facing the plasma, such as tungsten, used in divertor plates and antennas. This results in material erosion and plasma core contamination. Our study investigates the thermal behavior of tungsten surfaces under these conditions using fluid modeling and Particle-In-Cell (PIC) simulations. We examine the effects of thermionic electron emission on the sheath potential and heat transmission. The simulations reveal that thermionic emission can decrease the sheath voltage, increasing the surface temperature due to enhanced heat flux due to electrons. Additionally, we explore how the ratio between the spot size (S) and the surrounding surface length (Ly) influences the surface temperature. We find that a higher Ly/S ratio allows the surface to reach higher temperatures before the system enters the space-charge-limited regime, where thermionic current is maximized and considerably larger than the case where the entire surface is emissive (Ly=S).
面临大等离子体热负荷的钨点的模拟温度
在热核聚变实验堆这样的聚变装置中,等离子体与第一壁之间的相互作用是一个重大问题,因为冲击第一壁的热通量很高,通常达到几十兆瓦/平方米。这些高热流量会导致在面向等离子体的部件上形成热点,例如在分流器板和天线中使用的钨。这将导致材料侵蚀和等离子体核心污染。我们的研究利用流体建模和粒子内胞(PIC)模拟研究了钨表面在这些条件下的热行为。我们研究了热电子发射对鞘势和热传递的影响。模拟结果表明,热电子发射会降低鞘电压,同时由于电子增强了热通量而提高了表面温度。此外,我们还探讨了光斑尺寸(S)与周围表面长度(Ly)之比对表面温度的影响。我们发现,较高的 Ly/S 比值可使表面在系统进入空间电荷受限状态之前达到更高的温度,在该状态下,热离子电流达到最大值,并大大高于整个表面都发射的情况(Ly=S)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Materials and Energy
Nuclear Materials and Energy Materials Science-Materials Science (miscellaneous)
CiteScore
3.70
自引率
15.40%
发文量
175
审稿时长
20 weeks
期刊介绍: The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信