Large sample correlation matrices with unbounded spectrum

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Yanpeng Li
{"title":"Large sample correlation matrices with unbounded spectrum","authors":"Yanpeng Li","doi":"10.1016/j.jmva.2024.105373","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we demonstrate that the diagonal of a high-dimensional sample covariance matrix stemming from <span><math><mi>n</mi></math></span> independent observations of a <span><math><mi>p</mi></math></span>-dimensional time series with finite fourth moments can be approximated in spectral norm by the diagonal of the population covariance matrix regardless of the spectral norm of the population covariance matrix. Our assumptions involve <span><math><mi>p</mi></math></span> and <span><math><mi>n</mi></math></span> tending to infinity, with <span><math><mrow><mi>p</mi><mo>/</mo><mi>n</mi></mrow></math></span> tending to a constant which might be positive or zero. Consequently, we investigate the asymptotic properties of the sample correlation matrix with a divergent spectrum, and we explore its applications by deriving the limiting spectral distribution for its eigenvalues and analyzing the convergence of divergent and non-divergent spiked eigenvalues under a generalized spiked correlation framework.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"205 ","pages":"Article 105373"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000800","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we demonstrate that the diagonal of a high-dimensional sample covariance matrix stemming from n independent observations of a p-dimensional time series with finite fourth moments can be approximated in spectral norm by the diagonal of the population covariance matrix regardless of the spectral norm of the population covariance matrix. Our assumptions involve p and n tending to infinity, with p/n tending to a constant which might be positive or zero. Consequently, we investigate the asymptotic properties of the sample correlation matrix with a divergent spectrum, and we explore its applications by deriving the limiting spectral distribution for its eigenvalues and analyzing the convergence of divergent and non-divergent spiked eigenvalues under a generalized spiked correlation framework.
具有无界频谱的大样本相关矩阵
在本文中,我们证明了由具有有限第四矩的 p 维时间序列的 n 个独立观测值所产生的高维样本协方差矩阵的对角线,在谱规范上可以用总体协方差矩阵的对角线来近似,而与总体协方差矩阵的谱规范无关。我们的假设是 p 和 n 趋于无穷大,p/n 趋于一个常数,这个常数可能是正数,也可能是零。因此,我们研究了具有发散谱的样本相关矩阵的渐近特性,并通过推导其特征值的极限谱分布以及分析广义尖峰相关框架下发散和非发散尖峰特征值的收敛性,探索了其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信