Song Ding , Zhijian Cai , Yanzu Wu , Huahan Zhang , Xingao Shen
{"title":"FNNGM: A neural-driven fractional-derivative multivariate fusion model for interpretable real-time CPI forecasts","authors":"Song Ding , Zhijian Cai , Yanzu Wu , Huahan Zhang , Xingao Shen","doi":"10.1016/j.knosys.2024.112591","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating models from diverse sources has attracted substantial interest in developing advanced time series forecasting technologies. However, current research lacks a comprehensive and deep fusion model to integrate multiple forecasting methodologies. To this end, this paper proposes a neural-driven fractional-derivative multivariate fusion model (<em>FNNGM (p, n)</em>) to assimilate the fractional-derivative dynamical system, the driving factor in grey multivariate models, and the neural network into a cohesive framework. Consequently, this fusion architecture can benefit from the synergy of the target system's dynamics, extensive exogenous information, and non-linear transformation. Additionally, <em>FNNGM (p, n)</em> fosters extra functionalities through its inherent memory layer and sequence decomposition, bolstering model interpretability with the visible memory mechanism and understandable model workflows. To showcase the utility of <em>FNNGM (p, n)</em>, this paper conducts real-time monthly consumer price index (CPI) forecasts that span ten years (from 2013:08 to 2023:07), analyzing the interpretable results from <em>FNNGM (p, n)</em> and contrasting it against many prevailing benchmark models. The comparison results reveal <em>FNNGM (p, n)</em>’s highly concentrated error distributions and the minimum mean absolute percentage forecasting error (<em>APFE</em>), squared forecasting error (<em>SFE)</em>, and absolute forecasting error (<em>AFE</em>) values of 0.22 %, 0.59, and 0.56, respectively. Furthermore, the ablation experiments are performed to explore the specific effects and compatibilities of the fusion components, validating the effectiveness of the proposed fusion approach.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012255","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating models from diverse sources has attracted substantial interest in developing advanced time series forecasting technologies. However, current research lacks a comprehensive and deep fusion model to integrate multiple forecasting methodologies. To this end, this paper proposes a neural-driven fractional-derivative multivariate fusion model (FNNGM (p, n)) to assimilate the fractional-derivative dynamical system, the driving factor in grey multivariate models, and the neural network into a cohesive framework. Consequently, this fusion architecture can benefit from the synergy of the target system's dynamics, extensive exogenous information, and non-linear transformation. Additionally, FNNGM (p, n) fosters extra functionalities through its inherent memory layer and sequence decomposition, bolstering model interpretability with the visible memory mechanism and understandable model workflows. To showcase the utility of FNNGM (p, n), this paper conducts real-time monthly consumer price index (CPI) forecasts that span ten years (from 2013:08 to 2023:07), analyzing the interpretable results from FNNGM (p, n) and contrasting it against many prevailing benchmark models. The comparison results reveal FNNGM (p, n)’s highly concentrated error distributions and the minimum mean absolute percentage forecasting error (APFE), squared forecasting error (SFE), and absolute forecasting error (AFE) values of 0.22 %, 0.59, and 0.56, respectively. Furthermore, the ablation experiments are performed to explore the specific effects and compatibilities of the fusion components, validating the effectiveness of the proposed fusion approach.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.