Effect of backfilling surface settlement trough on waste cover leakage

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Y.H. Fan, R. Kerry Rowe, Richard W.I. Brachman, Jamie F. VanGulck
{"title":"Effect of backfilling surface settlement trough on waste cover leakage","authors":"Y.H. Fan,&nbsp;R. Kerry Rowe,&nbsp;Richard W.I. Brachman,&nbsp;Jamie F. VanGulck","doi":"10.1016/j.geotexmem.2024.09.010","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of backfilling of a surface differential settlement trough to reduce leakage is explored both experimentally and numerically. The field experiment examined two lined sections each with an 11 mm-diameter hole in the liner on a nominally 4 horizontal:1 vertical slope. A 2 m by 3 m, 0.3 m deep depression was filled with a 50-50 sand-snow mixture in winter to give a continuous 4H:1V slope prior to covering with the liner and 0.3 m of cover soil. Spring thaw induced a differential settlement trough up to 0.14 m deep. A second section with a similar trough was backfilled with cover soil to reinstate the 4H:1V surface while the settlement depression in the liner remained. Over the 15 months of monitoring, the backfilling reduced leakage by 57% from a annual total of 565 L to 244 L (i.e., a 60% reduction in colder seasons, from 351.3 L to 137.8 L together with a 45% reduction in warmer seasons, from 141.8 L to 77.6 L). A 3D numerical model showed encouraging agreement with the experimental results. The model indicated an inverse relationship between leakage and slope gradient, and a direct relationship between leakage and depression depth and upgradient distance to the depression. The effect of cover hydraulic conductivity was complex.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 277-294"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424001122","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of backfilling of a surface differential settlement trough to reduce leakage is explored both experimentally and numerically. The field experiment examined two lined sections each with an 11 mm-diameter hole in the liner on a nominally 4 horizontal:1 vertical slope. A 2 m by 3 m, 0.3 m deep depression was filled with a 50-50 sand-snow mixture in winter to give a continuous 4H:1V slope prior to covering with the liner and 0.3 m of cover soil. Spring thaw induced a differential settlement trough up to 0.14 m deep. A second section with a similar trough was backfilled with cover soil to reinstate the 4H:1V surface while the settlement depression in the liner remained. Over the 15 months of monitoring, the backfilling reduced leakage by 57% from a annual total of 565 L to 244 L (i.e., a 60% reduction in colder seasons, from 351.3 L to 137.8 L together with a 45% reduction in warmer seasons, from 141.8 L to 77.6 L). A 3D numerical model showed encouraging agreement with the experimental results. The model indicated an inverse relationship between leakage and slope gradient, and a direct relationship between leakage and depression depth and upgradient distance to the depression. The effect of cover hydraulic conductivity was complex.
回填表面沉降槽对垃圾覆盖层渗漏的影响
通过实验和数值计算探讨了回填表面差异沉降槽以减少渗漏的效果。现场实验检查了两个内衬区段,每个区段的内衬上都有一个直径为 11 毫米的孔,垂直坡度名义上为 4 水平:1。在一个 2 米乘 3 米、深 0.3 米的凹陷处,冬季用 50-50 的沙雪混合物填充,以形成 4H:1V 的连续斜坡,然后覆盖衬垫和 0.3 米的覆盖土。春季解冻后产生了一个深达 0.14 米的差异沉降槽。第二段类似的沉降槽用覆盖土回填,以恢复 4H:1V 的表面,而衬垫中的沉降凹陷仍然存在。在 15 个月的监测中,回填后的渗漏量减少了 57%,从每年的 565 升减少到 244 升(即在寒冷季节减少 60%,从 351.3 升减少到 137.8 升,在温暖季节减少 45%,从 141.8 升减少到 77.6 升)。三维数值模型与实验结果的一致性令人鼓舞。该模型表明,渗漏与坡度之间存在反比关系,渗漏与洼地深度和洼地上游距离之间存在直接关系。覆盖层水导率的影响很复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信