Injective coloring of subclasses of chordal graphs

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
B.S. Panda, Rumki Ghosh
{"title":"Injective coloring of subclasses of chordal graphs","authors":"B.S. Panda,&nbsp;Rumki Ghosh","doi":"10.1016/j.tcs.2024.114894","DOIUrl":null,"url":null,"abstract":"<div><div>An injective <em>k</em>-coloring of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is a function <span><math><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> such that for every pair of vertices <em>u</em> and <em>v</em> having a common neighbor, <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>≠</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span>. The injective chromatic number <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> is the minimum <em>k</em> for which <em>G</em> admits an injective <em>k</em>-coloring. Given a graph <em>G</em> and a positive integer <em>k</em>, <span>Decide Injective Coloring Problem</span> is to decide whether <em>G</em> admits an injective k-coloring. <span>Decide Injective Coloring Problem</span> is known to be NP-complete for chordal graphs. In this paper, we strengthen this result by proving that <span>Decide Injective coloring Problem</span> remains NP-complete for undirected path graphs, a proper subclass of chordal graphs. Moreover, we show that it is not possible to approximate the injective chromatic number of an undirected path graph within a factor of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn><mo>−</mo><mi>ε</mi></mrow></msup></math></span> in polynomial time for every <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> unless ZPP = NP. On the positive side, we prove that the injective chromatic number of an interval graph is either <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> or <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the maximum degree of <em>G</em>. We also characterize the interval graphs having <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. As a consequence of this characterization, we obtain a linear time algorithm to find the injective chromatic number of an interval graph.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1023 ","pages":"Article 114894"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005115","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

An injective k-coloring of a graph G=(V,E) is a function f:V{1,2,,k} such that for every pair of vertices u and v having a common neighbor, f(u)f(v). The injective chromatic number χi(G) of a graph G is the minimum k for which G admits an injective k-coloring. Given a graph G and a positive integer k, Decide Injective Coloring Problem is to decide whether G admits an injective k-coloring. Decide Injective Coloring Problem is known to be NP-complete for chordal graphs. In this paper, we strengthen this result by proving that Decide Injective coloring Problem remains NP-complete for undirected path graphs, a proper subclass of chordal graphs. Moreover, we show that it is not possible to approximate the injective chromatic number of an undirected path graph within a factor of n1/3ε in polynomial time for every ε>0 unless ZPP = NP. On the positive side, we prove that the injective chromatic number of an interval graph is either Δ(G) or Δ(G)+1, where Δ(G) is the maximum degree of G. We also characterize the interval graphs having χi(G)=Δ(G) and χi(G)=Δ(G)+1. As a consequence of this characterization, we obtain a linear time algorithm to find the injective chromatic number of an interval graph.
弦图子类的注入着色
图 G=(V,E)的注入式 k 着色是一个函数 f:V→{1,2,...,k},对于每一对有共同邻接的顶点 u 和 v,f(u)≠f(v)。图 G 的注入色度数 χi(G)是 G 允许注入 k 着色的最小 k。给定一个图 G 和一个正整数 k,"决定注入着色问题"(Decide Injective Coloring Problem)就是要决定 G 是否允许注入 k 着色。众所周知,对于弦图,决定注入式着色问题是 NP-完全的。在本文中,我们通过证明 "决定注入着色问题 "对于无向路径图--弦图的一个适当子类--仍然是 NP-完全的,从而加强了这一结果。此外,我们还证明,除非 ZPP = NP,否则不可能在多项式时间内,对每个 ε>0 以 n1/3-ε 的因子逼近无向路径图的注入色度数。我们还描述了具有 χi(G)=Δ(G) 和 χi(G)=Δ(G)+1 的区间图的特征。根据这一特征,我们得到了求区间图注入色度数的线性时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信