Yuwei Pan , Xianwei Liu , Jianhong Dai , Wei Fu , Xiaoguo Song
{"title":"The effects of hydrogen on the bonding properties of SiC/Cu interface via first-principles calculations","authors":"Yuwei Pan , Xianwei Liu , Jianhong Dai , Wei Fu , Xiaoguo Song","doi":"10.1016/j.ssc.2024.115712","DOIUrl":null,"url":null,"abstract":"<div><div>Ceramic/metal interfaces own great importance of technology, but the weak interface bond limits their applications. In this work, the effects of doping H element on the stability and bonding properties of SiC/Cu interface are studied by first principles calculations. In order to study the stability of interface, the potential surfaces were firstly studied for the C and Si terminated SiC/Cu interfaces. The C terminated interface is more stable than the Si terminated interface, which contributes the largest work of adhesion of 3.998 J/m<sup>2</sup>. The effects of hydrogen on the interface bonding properties were further studied. The occupation properties of hydrogen atoms were then studied, the hydrogen tends to occupy the octahedral position with negative formation energy. To reveal the bonding strength of SiC/Cu interface, the tensile simulations were carried out. The hydrogen owns obvious effects on the tensile strength depends on its occupation site. The movement and diffusion properties of hydrogen atoms in the interface zone were studied combining molecular dynamics and climbing image nudged elastic band method. Finally, the bonding mechanisms were analyzed by combining charge density, state density, differential charge and bader charge. Based on the above calculation results, it is found that for SiC(001)/Cu(111) interface, the H element generally has a negative impact on the bonding properties of SiC/Cu interface.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"394 ","pages":"Article 115712"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824002898","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Ceramic/metal interfaces own great importance of technology, but the weak interface bond limits their applications. In this work, the effects of doping H element on the stability and bonding properties of SiC/Cu interface are studied by first principles calculations. In order to study the stability of interface, the potential surfaces were firstly studied for the C and Si terminated SiC/Cu interfaces. The C terminated interface is more stable than the Si terminated interface, which contributes the largest work of adhesion of 3.998 J/m2. The effects of hydrogen on the interface bonding properties were further studied. The occupation properties of hydrogen atoms were then studied, the hydrogen tends to occupy the octahedral position with negative formation energy. To reveal the bonding strength of SiC/Cu interface, the tensile simulations were carried out. The hydrogen owns obvious effects on the tensile strength depends on its occupation site. The movement and diffusion properties of hydrogen atoms in the interface zone were studied combining molecular dynamics and climbing image nudged elastic band method. Finally, the bonding mechanisms were analyzed by combining charge density, state density, differential charge and bader charge. Based on the above calculation results, it is found that for SiC(001)/Cu(111) interface, the H element generally has a negative impact on the bonding properties of SiC/Cu interface.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.