{"title":"Tilting theory for finite dimensional 1-Iwanaga-Gorenstein algebras","authors":"Yuta Kimura , Hiroyuki Minamoto , Kota Yamaura","doi":"10.1016/j.jalgebra.2024.08.034","DOIUrl":null,"url":null,"abstract":"<div><div>We study tilting objects of the stable category <span><math><msup><mrow><munder><mrow><mrow><mi>CM</mi></mrow></mrow><mo>_</mo></munder></mrow><mrow><mi>Z</mi></mrow></msup><mspace></mspace><mi>A</mi></math></span> of graded Cohen-Macaulay modules over a finite dimensional graded Iwanaga-Gorenstein algebra <em>A</em>. We first show that if there exists a tilting object in <span><math><msup><mrow><munder><mrow><mrow><mi>CM</mi></mrow></mrow><mo>_</mo></munder></mrow><mrow><mi>Z</mi></mrow></msup><mspace></mspace><mi>A</mi></math></span>, then its endomorphism algebra always has finite global dimension. Next, to study the existence of a tilting object, we introduce a numerical invariant <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. In the case where <em>A</em> is 1-Iwanaga-Gorenstein, we give a sufficient condition on <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for the existence of a tilting object. As an application, for a truncated preprojective algebra <span><math><mi>Π</mi><msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mi>w</mi></mrow></msub></math></span> of a tree quiver <em>Q</em>, we prove that <span><math><msup><mrow><munder><mrow><mrow><mi>CM</mi></mrow></mrow><mo>_</mo></munder></mrow><mrow><mi>Z</mi></mrow></msup><mspace></mspace><mi>Π</mi><msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mi>w</mi></mrow></msub></math></span> always admits a tilting object.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study tilting objects of the stable category of graded Cohen-Macaulay modules over a finite dimensional graded Iwanaga-Gorenstein algebra A. We first show that if there exists a tilting object in , then its endomorphism algebra always has finite global dimension. Next, to study the existence of a tilting object, we introduce a numerical invariant . In the case where A is 1-Iwanaga-Gorenstein, we give a sufficient condition on for the existence of a tilting object. As an application, for a truncated preprojective algebra of a tree quiver Q, we prove that always admits a tilting object.