{"title":"Monitoring seismic velocity changes at Campi Flegrei (Italy) using seismic noise interferometry","authors":"","doi":"10.1016/j.jvolgeores.2024.108199","DOIUrl":null,"url":null,"abstract":"<div><div>Campi Flegrei is a volcanic field located west of Naples (Italy) in a densely populated area. Since 2005, its ground has been rising steadily due to the accumulation of fluids at shallow depths. The inflation of volcanic edifices is a possible precursor of an impending eruption. The uplift is accompanied by increasing seismic activity. This raises concerns about the possibility that the volcano may be on the verge of an eruption. To track the fluid movement, it is possible to monitor subtle changes of velocities of seismic waves by exploring ambient seismic noise. By examining different frequency bands, we can observe velocity changes at different depths. We interpret these changes as a monitoring of depth-dependent deformation in addition to the standard monitoring of surface deformation. We observe a velocity decrease in the long-term trend, presumably due to the extension of the hydrothermal system at shallow depths. To explain the long-term changes, we model a spherical pressure source to simulate volumetric strain changes induced by recent fluid activity. The model explains both, surface and subsurface deformation which leads to the opening of microcracks and pores, resulting in the observed velocity decrease. The short-term velocity changes are mainly driven by temperature or groundwater level changes. Once velocity changes are corrected for seasonal effects, remaining short term velocity changes can be associated with volcanic activity and earthquake swarms.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324001914","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Campi Flegrei is a volcanic field located west of Naples (Italy) in a densely populated area. Since 2005, its ground has been rising steadily due to the accumulation of fluids at shallow depths. The inflation of volcanic edifices is a possible precursor of an impending eruption. The uplift is accompanied by increasing seismic activity. This raises concerns about the possibility that the volcano may be on the verge of an eruption. To track the fluid movement, it is possible to monitor subtle changes of velocities of seismic waves by exploring ambient seismic noise. By examining different frequency bands, we can observe velocity changes at different depths. We interpret these changes as a monitoring of depth-dependent deformation in addition to the standard monitoring of surface deformation. We observe a velocity decrease in the long-term trend, presumably due to the extension of the hydrothermal system at shallow depths. To explain the long-term changes, we model a spherical pressure source to simulate volumetric strain changes induced by recent fluid activity. The model explains both, surface and subsurface deformation which leads to the opening of microcracks and pores, resulting in the observed velocity decrease. The short-term velocity changes are mainly driven by temperature or groundwater level changes. Once velocity changes are corrected for seasonal effects, remaining short term velocity changes can be associated with volcanic activity and earthquake swarms.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.