Impact of composition on the properties of full-Heusler Ti2FexMn1-xAl alloys in spintronics

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abbas A. Abdulridha , Zahra Nourbakhsh , Daryoosh Vashaee
{"title":"Impact of composition on the properties of full-Heusler Ti2FexMn1-xAl alloys in spintronics","authors":"Abbas A. Abdulridha ,&nbsp;Zahra Nourbakhsh ,&nbsp;Daryoosh Vashaee","doi":"10.1016/j.matchemphys.2024.130013","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the structural, electronic, and magnetic characteristics of full-Heusler Ti<sub>2</sub>Fe<sub>x</sub>Mn<sub>1-x</sub>Al alloys for spintronic applications. The regular Heusler structure is identified as the most stable across all x concentrations. The inverse Heusler structure exhibits half-metallic behavior with a finite energy band gap in the spin-up states, while the regular structure shows metallic behavior for both spin directions. Dirac-like points along the M→Γ direction are observed, particularly in alloys with x = 0 and 0.25 (inverse structure) and x = 0.5, 0.75, and 1 (regular structure), indicating advanced electronic properties. Magnetic analysis reveals that Ti atoms' local magnetic moments are antiparallel to those of Mn and Fe atoms. The total magnetic moment is highest for x = 1 (Ti<sub>2</sub>MnAl) and nearly zero for x = 0 (Ti<sub>2</sub>FeAl). Additionally, the inverse Heusler structure achieves 100 % spin polarization at the Fermi energy, underscoring its suitability for spintronic applications. This study highlights the potential of Ti<sub>2</sub>Fe<sub>x</sub>Mn<sub>1-x</sub>Al alloys for future spintronic devices.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"328 ","pages":"Article 130013"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424011416","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the structural, electronic, and magnetic characteristics of full-Heusler Ti2FexMn1-xAl alloys for spintronic applications. The regular Heusler structure is identified as the most stable across all x concentrations. The inverse Heusler structure exhibits half-metallic behavior with a finite energy band gap in the spin-up states, while the regular structure shows metallic behavior for both spin directions. Dirac-like points along the M→Γ direction are observed, particularly in alloys with x = 0 and 0.25 (inverse structure) and x = 0.5, 0.75, and 1 (regular structure), indicating advanced electronic properties. Magnetic analysis reveals that Ti atoms' local magnetic moments are antiparallel to those of Mn and Fe atoms. The total magnetic moment is highest for x = 1 (Ti2MnAl) and nearly zero for x = 0 (Ti2FeAl). Additionally, the inverse Heusler structure achieves 100 % spin polarization at the Fermi energy, underscoring its suitability for spintronic applications. This study highlights the potential of Ti2FexMn1-xAl alloys for future spintronic devices.

Abstract Image

成分对自旋电子学中全赫斯勒 Ti2FexMn1-xAl 合金特性的影响
本研究探讨了用于自旋电子应用的全 Heusler Ti2FexMn1-xAl 合金的结构、电子和磁性特征。在所有 x 浓度下,规则 Heusler 结构都是最稳定的。反Heusler结构在自旋上升态表现出有限能带隙的半金属性,而规则结构在两个自旋方向都表现出金属性。沿 M→Γ 方向观察到类似狄拉克的点,尤其是在 x = 0 和 0.25(反向结构)以及 x = 0.5、0.75 和 1(规则结构)的合金中,这表明合金具有先进的电子特性。磁性分析表明,钛原子的局部磁矩与锰原子和铁原子的局部磁矩相反。x = 1(Ti2MnAl)时的总磁矩最大,而 x = 0(Ti2FeAl)时的总磁矩几乎为零。此外,反海斯勒结构在费米能达到了 100% 的自旋极化,突出了它在自旋电子应用中的适用性。这项研究凸显了 Ti2FexMn1-xAl 合金在未来自旋电子器件中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信