E. Yildirim , E. Jimenez-Melero , B. Dacus , C. Dennett , K.B. Woller , M. Short , P.M. Mummery
{"title":"Elucidating the thermal response of W-Ta alloys with Transient Grating Spectroscopy, TEM and atomistic simulation","authors":"E. Yildirim , E. Jimenez-Melero , B. Dacus , C. Dennett , K.B. Woller , M. Short , P.M. Mummery","doi":"10.1016/j.fusengdes.2024.114676","DOIUrl":null,"url":null,"abstract":"<div><div>Critical for tungsten alloys’ use as plasma-facing component materials are their thermal response and their evolution under irradiation. Utilising Transient Grating Spectroscopy, TEM, and Molecular Dynamics, this study sought to probe these changes in W, W6Ta, and W11Ta alloys. Irradiation with 12.25 MeV W<span><math><msup><mrow></mrow><mrow><mn>6</mn><mo>+</mo></mrow></msup></math></span> ions was carried out in the CLASS facility at MIT at a temperature of 500 °C for doses of 0.1, 0.3, and 1.0 dpa. The alloys’ thermal diffusivity was found to degrade less than that of the pure counterpart. Molecular Dynamics simulation revealed that this was due to a reduced defect population below TEM resolution. Despite these alloys showing enhanced resilience to thermal property degradation, it was found that the absolute values of their thermal diffusivity remained below that of pure tungsten. This study highlighted a key interplay between enhancing radiation tolerance with alloying additions and the alloy additions’ initial negative effect on the thermal response and thus in-service behaviour.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624005271","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Critical for tungsten alloys’ use as plasma-facing component materials are their thermal response and their evolution under irradiation. Utilising Transient Grating Spectroscopy, TEM, and Molecular Dynamics, this study sought to probe these changes in W, W6Ta, and W11Ta alloys. Irradiation with 12.25 MeV W ions was carried out in the CLASS facility at MIT at a temperature of 500 °C for doses of 0.1, 0.3, and 1.0 dpa. The alloys’ thermal diffusivity was found to degrade less than that of the pure counterpart. Molecular Dynamics simulation revealed that this was due to a reduced defect population below TEM resolution. Despite these alloys showing enhanced resilience to thermal property degradation, it was found that the absolute values of their thermal diffusivity remained below that of pure tungsten. This study highlighted a key interplay between enhancing radiation tolerance with alloying additions and the alloy additions’ initial negative effect on the thermal response and thus in-service behaviour.
期刊介绍:
The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.