Yangzi Cong , Chi Chen , Bisheng Yang , Ruofei Zhong , Shangzhe Sun , Yuhang Xu , Zhengfei Yan , Xianghong Zou , Zhigang Tu
{"title":"OR-LIM: Observability-aware robust LiDAR-inertial-mapping under high dynamic sensor motion","authors":"Yangzi Cong , Chi Chen , Bisheng Yang , Ruofei Zhong , Shangzhe Sun , Yuhang Xu , Zhengfei Yan , Xianghong Zou , Zhigang Tu","doi":"10.1016/j.isprsjprs.2024.09.036","DOIUrl":null,"url":null,"abstract":"<div><div>Light Detection And Ranging (LiDAR) technology has provided an impactful way to capture 3D data. However, consistent mapping in sensing-degenerated and perceptually-limited scenes (e.g. multi-story buildings) or under high dynamic sensor motion (e.g. rotating platform) remains a significant challenge. In this paper, we present OR-LIM, a novel observability-aware LiDAR-inertial-mapping system. Essentially, it combines a robust real-time LiDAR-inertial-odometry (LIO) module with an efficient surfel-map-smoothing (SMS) module that seamlessly optimizes the sensor poses and scene geometry at the same time. To improve robustness, the planar surfels are hierarchically generated and grown from point cloud maps to provide reliable correspondences for fixed-lag optimization. Moreover, the normals of surfels are analyzed for the observability evaluation of each frame. To maintain global consistency, a factor graph is utilized integrating the information from IMU propagation, LIO as well as the SMS. The system is extensively tested on the datasets collected by a low-cost multi-beam LiDAR (MBL) mounted on a rotating platform. The experiments with various settings of sensor motion, conducted on complex multi-story buildings and large-scale outdoor scenes, demonstrate the superior performance of our system over multiple state-of-the-art methods. The improvement of point accuracy reaches 3.39–13.6 % with an average 8.71 % outdoor and correspondingly 1.89–15.88 % with 9.09 % indoor, with reference to the collected Terrestrial Laser Scanning (TLS) map.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 610-627"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003745","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Light Detection And Ranging (LiDAR) technology has provided an impactful way to capture 3D data. However, consistent mapping in sensing-degenerated and perceptually-limited scenes (e.g. multi-story buildings) or under high dynamic sensor motion (e.g. rotating platform) remains a significant challenge. In this paper, we present OR-LIM, a novel observability-aware LiDAR-inertial-mapping system. Essentially, it combines a robust real-time LiDAR-inertial-odometry (LIO) module with an efficient surfel-map-smoothing (SMS) module that seamlessly optimizes the sensor poses and scene geometry at the same time. To improve robustness, the planar surfels are hierarchically generated and grown from point cloud maps to provide reliable correspondences for fixed-lag optimization. Moreover, the normals of surfels are analyzed for the observability evaluation of each frame. To maintain global consistency, a factor graph is utilized integrating the information from IMU propagation, LIO as well as the SMS. The system is extensively tested on the datasets collected by a low-cost multi-beam LiDAR (MBL) mounted on a rotating platform. The experiments with various settings of sensor motion, conducted on complex multi-story buildings and large-scale outdoor scenes, demonstrate the superior performance of our system over multiple state-of-the-art methods. The improvement of point accuracy reaches 3.39–13.6 % with an average 8.71 % outdoor and correspondingly 1.89–15.88 % with 9.09 % indoor, with reference to the collected Terrestrial Laser Scanning (TLS) map.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.