VLFSE: Enhancing visual tracking through visual language fusion and state update evaluator

Fuchao Yang , Mingkai Jiang , Qiaohong Hao , Xiaolei Zhao , Qinghe Feng
{"title":"VLFSE: Enhancing visual tracking through visual language fusion and state update evaluator","authors":"Fuchao Yang ,&nbsp;Mingkai Jiang ,&nbsp;Qiaohong Hao ,&nbsp;Xiaolei Zhao ,&nbsp;Qinghe Feng","doi":"10.1016/j.mlwa.2024.100588","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, visual tracking algorithms have achieved impressive results by combining dynamic templates. However, the instability of visual images and the incorrect timing of template updates lead to decreased tracking accuracy and stability in intricate scenarios. To address these issues, we propose a visual tracking algorithm through visual language fusion and a state update evaluator (VLFSE). Specifically, our approach introduces a multimodal attention mechanism that uses self-attention to mine and integrate information from diverse sources effectively. This mechanism ensures a richer, context-aware representation of the target, enabling more accurate tracking even in complex scenes. Moreover, we recognize the critical need for precise template updates to maintain tracking accuracy over time. To this end, we develop a state update evaluator, a component trained online to assess the necessity and timing of template updates accurately. This evaluator acts as a safeguard, preventing erroneous updates and ensuring the tracker adapts optimally to changes in the target’s appearance. The experimental results on challenging visual language tracking datasets demonstrate our tracker’s superior performance, showcasing its adaptability and accuracy in complex tracking scenarios.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"18 ","pages":"Article 100588"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, visual tracking algorithms have achieved impressive results by combining dynamic templates. However, the instability of visual images and the incorrect timing of template updates lead to decreased tracking accuracy and stability in intricate scenarios. To address these issues, we propose a visual tracking algorithm through visual language fusion and a state update evaluator (VLFSE). Specifically, our approach introduces a multimodal attention mechanism that uses self-attention to mine and integrate information from diverse sources effectively. This mechanism ensures a richer, context-aware representation of the target, enabling more accurate tracking even in complex scenes. Moreover, we recognize the critical need for precise template updates to maintain tracking accuracy over time. To this end, we develop a state update evaluator, a component trained online to assess the necessity and timing of template updates accurately. This evaluator acts as a safeguard, preventing erroneous updates and ensuring the tracker adapts optimally to changes in the target’s appearance. The experimental results on challenging visual language tracking datasets demonstrate our tracker’s superior performance, showcasing its adaptability and accuracy in complex tracking scenarios.
VLFSE:通过视觉语言融合和状态更新评估器增强视觉跟踪能力
最近,视觉跟踪算法通过结合动态模板取得了令人瞩目的成果。然而,视觉图像的不稳定性和模板更新时机的不正确导致了复杂场景下跟踪精度和稳定性的下降。为了解决这些问题,我们通过视觉语言融合和状态更新评估器(VLFSE)提出了一种视觉跟踪算法。具体来说,我们的方法引入了一种多模态注意力机制,利用自我注意力有效地挖掘和整合来自不同来源的信息。这种机制可确保对目标进行更丰富的上下文感知表征,即使在复杂场景中也能实现更精确的跟踪。此外,我们认识到精确更新模板以保持长期跟踪准确性的迫切需要。为此,我们开发了一个状态更新评估器,它是一个经过在线训练的组件,能够准确评估模板更新的必要性和时机。该评估器起着保障作用,可防止错误更新,并确保跟踪器以最佳方式适应目标外观的变化。在具有挑战性的视觉语言跟踪数据集上的实验结果证明了我们的跟踪器的卓越性能,展示了它在复杂跟踪场景中的适应性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信