A multi-stage machine learning approach for stock price prediction: Engineered and derivative indices

Shaghayegh Abolmakarem , Farshid Abdi , Kaveh Khalili-Damghani , Hosein Didehkhani
{"title":"A multi-stage machine learning approach for stock price prediction: Engineered and derivative indices","authors":"Shaghayegh Abolmakarem ,&nbsp;Farshid Abdi ,&nbsp;Kaveh Khalili-Damghani ,&nbsp;Hosein Didehkhani","doi":"10.1016/j.iswa.2024.200449","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a machine learning approach is proposed to predict the next day's stock prices. The methodology involves comprehensive data collection and feature generation, followed by predictions utilizing Multi-Layer Perceptron (MLP) networks. We selected 5,283 records of daily historical data, including open prices, close prices, highest prices, lowest prices, and trading volumes from four well-known stocks in the FTSE 100 index. A novel set of engineered and derivative indices is extracted from the original time series to enhance prediction accuracy. Two Multi-Layer Perceptron (MLP) are proposed to predict the next day's stock prices using the engineered discrete and continuous indices. The case study uses the daily historical time series of stock prices between January 1, 2000, and December 31, 2020. The proposed machine learning approach presents suitable applicability and accuracy, respectively.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"24 ","pages":"Article 200449"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324001236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a machine learning approach is proposed to predict the next day's stock prices. The methodology involves comprehensive data collection and feature generation, followed by predictions utilizing Multi-Layer Perceptron (MLP) networks. We selected 5,283 records of daily historical data, including open prices, close prices, highest prices, lowest prices, and trading volumes from four well-known stocks in the FTSE 100 index. A novel set of engineered and derivative indices is extracted from the original time series to enhance prediction accuracy. Two Multi-Layer Perceptron (MLP) are proposed to predict the next day's stock prices using the engineered discrete and continuous indices. The case study uses the daily historical time series of stock prices between January 1, 2000, and December 31, 2020. The proposed machine learning approach presents suitable applicability and accuracy, respectively.

Abstract Image

股票价格预测的多阶段机器学习方法:工程指数和衍生指数
本文提出了一种机器学习方法来预测第二天的股票价格。该方法包括全面的数据收集和特征生成,然后利用多层感知器(MLP)网络进行预测。我们选取了 5283 条每日历史数据记录,包括富时 100 指数中四只知名股票的开盘价、收盘价、最高价、最低价和交易量。我们从原始时间序列中提取了一组新的工程指数和衍生指数,以提高预测精度。提出了两个多层感知器(MLP),利用工程离散和连续指数预测第二天的股票价格。案例研究使用的是 2000 年 1 月 1 日至 2020 年 12 月 31 日期间股票价格的每日历史时间序列。所提出的机器学习方法分别具有合适的适用性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信