Tao Wang , Ying-En Ge , Yongjie Wang , Carlo G. Prato , Wenqiang Chen , Yuchen Niu
{"title":"A conflict risk graph approach to modeling spatio-temporal dynamics of intersection safety","authors":"Tao Wang , Ying-En Ge , Yongjie Wang , Carlo G. Prato , Wenqiang Chen , Yuchen Niu","doi":"10.1016/j.trc.2024.104874","DOIUrl":null,"url":null,"abstract":"<div><div>Intersections are among the most hazardous roadway spaces due to the complex and conflicting road users’ movements. Spatio-temporal modeling of conflict risks among road users can help to identify strategies to mitigate the exacerbation of safety risks and restore hazardous conditions to normal traffic situations<strong>.</strong> This paper proposes the 'Conflict Risk Graph' as a novel concept to infer real-time conflict risks at intersections at a fine-grained level by mapping conflict-prone locations to nodes within a network characterized by specific topological structures. A significant contribution of this work is the development of a Transformer-based Graph Convolutional Network (Trans-GCN), a model that synergistically combines the Transformer's proficiency in capturing global dependence with the GCN's ability to learn local correlations. The Trans-GCN adeptly models the complex evolution patterns of conflict risks at intersections. The evaluation in this paper against five common state-of-the-art deep learning approaches demonstrates the superior performance of the Trans-GCN in conflict risk inference and adaptability to node changes. Furthermore, extensive experiments with different node configurations reveal a correlation between node setup and model performance, showing that higher spatio-temporal resolution decreases inference accuracy. This insight informs the selection of an optimal node configuration that balances the detailed capture of spatio-temporal dynamics with modeling accuracy, enabling ideal conflict risk inferences at intersections. Ultimately, this work offers significant insights for the enhancement of proactive traffic safety management and the advancement of intelligent traffic systems.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24003954","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intersections are among the most hazardous roadway spaces due to the complex and conflicting road users’ movements. Spatio-temporal modeling of conflict risks among road users can help to identify strategies to mitigate the exacerbation of safety risks and restore hazardous conditions to normal traffic situations. This paper proposes the 'Conflict Risk Graph' as a novel concept to infer real-time conflict risks at intersections at a fine-grained level by mapping conflict-prone locations to nodes within a network characterized by specific topological structures. A significant contribution of this work is the development of a Transformer-based Graph Convolutional Network (Trans-GCN), a model that synergistically combines the Transformer's proficiency in capturing global dependence with the GCN's ability to learn local correlations. The Trans-GCN adeptly models the complex evolution patterns of conflict risks at intersections. The evaluation in this paper against five common state-of-the-art deep learning approaches demonstrates the superior performance of the Trans-GCN in conflict risk inference and adaptability to node changes. Furthermore, extensive experiments with different node configurations reveal a correlation between node setup and model performance, showing that higher spatio-temporal resolution decreases inference accuracy. This insight informs the selection of an optimal node configuration that balances the detailed capture of spatio-temporal dynamics with modeling accuracy, enabling ideal conflict risk inferences at intersections. Ultimately, this work offers significant insights for the enhancement of proactive traffic safety management and the advancement of intelligent traffic systems.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.