{"title":"Zeta functions for spherical tits buildings of finite general linear groups","authors":"Jianhao Shen","doi":"10.1016/j.aim.2024.109965","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we define edge zeta functions for spherical buildings associated with finite general linear groups. We derive elegant formulas for these zeta functions and reveal patterns of eigenvalues of these buildings, by introducing and applying insightful tools including digraphs <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, cyclic <em>n</em>-partite graphs, partite-transitive group actions, and Springer's theorem on Hecke algebras.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109965"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004808","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we define edge zeta functions for spherical buildings associated with finite general linear groups. We derive elegant formulas for these zeta functions and reveal patterns of eigenvalues of these buildings, by introducing and applying insightful tools including digraphs and , cyclic n-partite graphs, partite-transitive group actions, and Springer's theorem on Hecke algebras.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.