A motivic pairing and the Mellin transform in function fields

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nathan Green
{"title":"A motivic pairing and the Mellin transform in function fields","authors":"Nathan Green","doi":"10.1016/j.aim.2024.109962","DOIUrl":null,"url":null,"abstract":"<div><div>We define two pairings relating the <em>A</em>-motive with the dual <em>A</em>-motive of an abelian Anderson <em>A</em>-module. We show that specializations of these pairings give the exponential and logarithm functions of this Anderson <em>A</em>-module, and we use these specializations to give precise formulas for the coefficients of the exponential and logarithm functions. We then use these pairings to express the exponential and logarithm functions as evaluations of certain infinite products. As an application of these ideas, we prove an analogue of the Mellin transform formula for the Riemann zeta function in the case of Carlitz zeta values. We also give an example showing how our results apply to Carlitz multiple zeta values.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004778","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We define two pairings relating the A-motive with the dual A-motive of an abelian Anderson A-module. We show that specializations of these pairings give the exponential and logarithm functions of this Anderson A-module, and we use these specializations to give precise formulas for the coefficients of the exponential and logarithm functions. We then use these pairings to express the exponential and logarithm functions as evaluations of certain infinite products. As an application of these ideas, we prove an analogue of the Mellin transform formula for the Riemann zeta function in the case of Carlitz zeta values. We also give an example showing how our results apply to Carlitz multiple zeta values.
函数场中的动机配对和梅林变换
我们定义了两种配对关系,它们分别涉及无性安德森 A 模块的 A 动量和对偶 A 动量。我们证明这些配对的特殊化给出了这个安德森 A 模块的指数函数和对数函数,并利用这些特殊化给出了指数函数和对数函数系数的精确公式。然后,我们利用这些配对将指数函数和对数函数表示为某些无穷积的求值。作为这些思想的应用,我们证明了黎曼zeta函数在卡利茨zeta值情况下的梅林变换公式。我们还举例说明了我们的结果如何适用于卡利茨多重zeta值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信