From local nets to Euler elements

IF 1.5 1区 数学 Q1 MATHEMATICS
Vincenzo Morinelli, Karl-Hermann Neeb
{"title":"From local nets to Euler elements","authors":"Vincenzo Morinelli,&nbsp;Karl-Hermann Neeb","doi":"10.1016/j.aim.2024.109960","DOIUrl":null,"url":null,"abstract":"<div><div>Various aspects of the geometric setting of Algebraic Quantum Field Theory (AQFT) models related to representations of the Poincaré group can be studied for general Lie groups, whose Lie algebra contains an Euler element, i.e., ad <em>h</em> is diagonalizable with eigenvalues in <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>. This has been explored by the authors and their collaborators during recent years. A key property in this construction is the Bisognano–Wichmann property (thermal property for wedge region algebras) concerning the geometric implementation of modular groups of local algebras.</div><div>In the present paper we prove that under a natural regularity condition, geometrically implemented modular groups arising from the Bisognano–Wichmann property are always generated by Euler elements. We also show the converse, namely that in presence of Euler elements and the Bisognano–Wichmann property, regularity and localizability hold in a quite general setting. Lastly we show that, in this generalized AQFT, in the vacuum representation, under analogous assumptions (regularity and Bisognano–Wichmann), the von Neumann algebras associated to wedge regions are type III<sub>1</sub> factors, a property that is well-known in the AQFT context.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109960"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004754","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Various aspects of the geometric setting of Algebraic Quantum Field Theory (AQFT) models related to representations of the Poincaré group can be studied for general Lie groups, whose Lie algebra contains an Euler element, i.e., ad h is diagonalizable with eigenvalues in {1,0,1}. This has been explored by the authors and their collaborators during recent years. A key property in this construction is the Bisognano–Wichmann property (thermal property for wedge region algebras) concerning the geometric implementation of modular groups of local algebras.
In the present paper we prove that under a natural regularity condition, geometrically implemented modular groups arising from the Bisognano–Wichmann property are always generated by Euler elements. We also show the converse, namely that in presence of Euler elements and the Bisognano–Wichmann property, regularity and localizability hold in a quite general setting. Lastly we show that, in this generalized AQFT, in the vacuum representation, under analogous assumptions (regularity and Bisognano–Wichmann), the von Neumann algebras associated to wedge regions are type III1 factors, a property that is well-known in the AQFT context.
从局部网到欧拉元素
代数量子场论(AQFT)模型的几何设置与波恩卡列群的表征有关的各个方面可以针对一般的李群进行研究,这些李群的李代数包含一个欧拉元,即ad h是可对角的,其特征值在{-1,0,1}内。作者及其合作者近年来一直在探索这一问题。在本文中,我们证明了在一个自然的正则性条件下,由 Bisognano- Wichmann 性质产生的几何上实现的模块群总是由欧拉元素生成的。我们还证明了相反的情况,即在存在欧拉元素和比索纳诺-维赫曼性质的情况下,正则性和局部性在一个相当普遍的环境中是成立的。最后,我们证明,在这个广义 AQFT 中,在真空表示中,在类似的假设(正则性和比索纳诺-维奇曼)下,与楔形区域相关的冯-诺依曼代数是 III1 型因子,这一性质在 AQFT 中是众所周知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信