Positive solutions for a Kirchhoff problem of Brezis–Nirenberg type in dimension four

IF 1.3 2区 数学 Q1 MATHEMATICS
Giovanni Anello, Luca Vilasi
{"title":"Positive solutions for a Kirchhoff problem of Brezis–Nirenberg type in dimension four","authors":"Giovanni Anello,&nbsp;Luca Vilasi","doi":"10.1016/j.na.2024.113675","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a Kirchhoff problem of Brezis–Nirenberg type in a smooth bounded domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> with Dirichlet boundary conditions. Our approach, novel in this framework and based upon approximation arguments, allows us to cope with the interaction between the higher order Kirchhoff term and the critical nonlinearity, typical of the dimension four. We derive several existence results of positive solutions, complementing and improving earlier results in the literature. In particular, we provide explicit bounds of the parameters <span><math><mi>b</mi></math></span> and <span><math><mi>λ</mi></math></span> coupled, respectively, with the higher order Kirchhoff term and the subcritical nonlinearity, for which the existence of solutions occurs.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113675"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001949","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Kirchhoff problem of Brezis–Nirenberg type in a smooth bounded domain of R4 with Dirichlet boundary conditions. Our approach, novel in this framework and based upon approximation arguments, allows us to cope with the interaction between the higher order Kirchhoff term and the critical nonlinearity, typical of the dimension four. We derive several existence results of positive solutions, complementing and improving earlier results in the literature. In particular, we provide explicit bounds of the parameters b and λ coupled, respectively, with the higher order Kirchhoff term and the subcritical nonlinearity, for which the existence of solutions occurs.
四维布雷齐斯-尼伦堡型基尔霍夫问题的正解
我们考虑的是 R4 平滑有界域中的布雷齐斯-尼伦堡型基尔霍夫问题,其边界条件为狄利克特。我们的方法在这个框架中是新颖的,基于近似论证,使我们能够处理高阶基尔霍夫项与临界非线性之间的相互作用,这是典型的四维问题。我们推导出了几个正解的存在性结果,补充并改进了文献中的早期结果。特别是,我们提供了分别与高阶基尔霍夫项和次临界非线性耦合的参数 b 和 λ 的明确边界,对于这两个参数,解的存在是必然的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信